3,672 research outputs found

    Effect of vane twist on the performance of dome swirlers for gas turbine airblast atomizers

    Get PDF
    For advanced gas turbine engines, two combustor systems, the lean premixed/prevaporized (LPP) and the rich burn/quick quench/lean burn (RQL) offer great potential for reducing NO(x) emissions. An important consideration for either concept is the development of an advanced fuel injection system that will provide a stable, efficient, and very uniform combustion system over a wide operating range. High-shear airblast fuel injectors for gas turbine combustors have exhibited superior atomization and mixing compared with pressure-atomizing fuel injectors. This improved mixing has lowered NO(x) emissions and the pattern factor, and has enabled combustors to alternate fuels while maintaining a stable, efficient combustion system. The performance of high-shear airblast fuel injectors is highly dependent on the design of the dome swirl vanes. The type of swirl vanes most widely used in gas turbine combustors are usually flat for ease of manufacture, but vanes with curvature will, in general, give superior aerodynamic performance. The design and performance of high-turning, low-loss curved dome swirl vanes with twist along the span are investigated. The twist induces a secondary vortex flow pattern which will improve the atomization of the fuel, thereby producing a more uniform fuel-air distribution. This uniform distribution will increase combustion efficiency while lowering NO(x) emissions. A systematic swirl vane design system is presented based on one-, two-, and three-dimensional flowfield calculations, with variations in vane-turning angle, rate of turning, vane solidity, and vane twist as design parameters

    A case of Dystocia due to Fetal Ascites in Murrah Buffalo

    Full text link
    Dystocia in buffalo due to fetal causes is not common. However there are reports suggesting dystocia due to dropsical condition of fetus. Present case reports one of the fetal dropsical conditions in buffalo. In this case we report a successful management of dystocia due to fetal ascites in Murrah buffalo by incising the fetal abdomen to take out the fluid from peritoneum

    Effects of Chemistry on Blunt-Body Wake Structure

    Get PDF
    Results of a numerical study are presented for hypersonic low-density flow about a 70-deg blunt cone using direct simulation Monte Carlo (DSMC) and Navier-Stokes calculations. Particular emphasis is given to the effects of chemistry on the near-wake structure and on the surface quantities and the comparison of the DSMC results with the Navier-Stokes calculations. The flow conditions simulated are those experienced by a space vehicle at an altitude of 85 km and a velocity of 7 km/s during Earth entry. A steady vortex forms in the near wake for these freestream conditions for both chemically reactive and nonreactive air gas models. The size (axial length) of the vortex for the reactive air calculations is 25% larger than that of the nonreactive air calculations. The forebody surface quantities are less sensitive to the chemistry than the base surface quantities. The presence of the afterbody has no effect on the forebody flow structure or the surface quantities. The comparisons of DSMC and Navier-Stokes calculations show good agreement for the wake structure and the forebody surface quantities

    Can Three-Body Recombination Purify a Quantum Gas?

    Get PDF
    Three-body recombination in quantum gases is traditionally associated with heating, but it was recently found that it can also cool the gas. We show that in a partially condensed three-dimensional homogeneous Bose gas three-body loss could even purify the sample, that is, reduce the entropy per particle and increase the condensed fraction η. We predict that the evolution of η under continuous three-body loss can, depending on small changes in the initial conditions, exhibit two qualitatively different behaviors-if it is initially above a certain critical value, η increases further, whereas clouds with lower initial η evolve towards a thermal gas. These dynamical effects should be observable under realistic experimental conditions

    Sedentary time in older men and women: an international consensus statement and research priorities

    Get PDF
    Sedentary time is a modifiable determinant of poor health, and in older adults, reducing sedentary time may be an important first step in adopting and maintaining a more active lifestyle. The primary purpose of this consensus statement is to provide an integrated perspective on current knowledge and expert opinion pertaining to sedentary behaviour in older adults on the topics of measurement, associations with health outcomes, and interventions. A secondary yet equally important purpose is to suggest priorities for future research and knowledge translation based on gaps identified. A five-step Delphi consensus process was used. Experts in the area of sedentary behaviour and older adults (n=15) participated in three surveys, an in-person consensus meeting, and a validation process. The surveys specifically probed measurement, health outcomes, interventions, and research priorities. The meeting was informed by a literature review and conference symposium, and it was used to create statements on each of the areas addressed in this document. Knowledge users (n=3) also participated in the consensus meeting. Statements were then sent to the experts for validation. It was agreed that self-report tools need to be developed for understanding the context in which sedentary time is accumulated. For health outcomes, it was agreed that the focus of sedentary time research in older adults needs to include geriatric-relevant health outcomes, that there is insufficient evidence to quantify the dose-response relationship, that there is a lack of evidence on sedentary time from older adults in assisted facilities, and that evidence on the association between sedentary time and sleep is lacking. For interventions, research is needed to assess the impact that reducing sedentary time, or breaking up prolonged bouts of sedentary time has on geriatric-relevant health outcomes. Research priorities listed for each of these areas should be considered by researchers and funding agencies

    First-principles study of orthorhombic CdTiO3 perovskite

    Full text link
    In this work we perform an ab-initio study of CdTiO3 perovskite in its orthorhombic phase using FLAPW method. Our calculations help to decide between the different cristallographic structures proposed for this perovskite from X-Ray measurements. We compute the electric field gradient tensor (EFG) at Cd site and obtain excellent agreement with available experimental information from a perturbed angular correlation (PAC) experiment. We study EFG under an isotropic change of volume and show that in this case the widely used "point charge model approximation" to determine EFG works quite well.Comment: 4 pages, 1 figure. Accepted in Physical Review

    Motion anomaly detection and trajectory analysis in visual surveillance

    Get PDF
    Motion anomaly detection through video analysis is important for delivering autonomous situation awareness in public places. Surveillance scene segmentation and representation is the preliminary step to implementation anomaly detection. Surveillance scene can be represented using Region Association Graph (RAG), where nodes represent regions and edges denote connectivity among the regions. Existing RAG-based analysis algorithms assume simple anomalies such as moving objects visit statistically unimportant or abandoned regions. However, complex anomalies such as an object encircles within a particular region (Type-I) or within a set of regions (Type-II). In this paper, we extract statistical features from a given set of object trajectories and train multi-class support vector machines (SVM) to deal with each type of anomaly. In the testing phase, a given test trajectory is categorized as normal or anomalous with respect to the trained models. Performance evaluation of the proposed algorithm has been carried out on public as well as our own datasets. We have recorded sensitivity as high as 86% and fall-out rate as low as 9% in experimental evaluation of the proposed technique. We have carried out comparative analysis with state-of-the-art techniques to benchmark the method. It has been observed that the proposed model is consistent and highly accurate across challenging datasets

    Development of OMP based indirect ELISA to gauge the antibody titers in bovines against Pasteurella multocida

    Get PDF
    Summary Pasteurella multocida (P. multocida) is an important pathogen of various domestic animals. The outer membrane proteins (OMPs) play a major role in pathogenesis and immunogenicity of P. multocida. The aim of the study was to develop indirect enzyme linked immuno sorbant assay (ELISA) based on OMPs to ascertain the antibody titers in animals post-infection or to gauge the potency of vaccine. The OMPs were extracted and purified from P. multocida P:52 (vaccine strain) and P. multocida B:2 isolated from natural outbreak of Haemorrhagic septicaemia (HS) and analyzed on SDS PAGE and through western blot. The OMPs profile of the vaccine strain and the isolate from the natural outbreak of HS were found to be similar. Optimization of various components viz. coating antigens, anti-species conjugate, etc. were carried out against both anti-P. multocida hyper immune and pre immune serum. Validation of OMP based indirect ELISA assay to measure immune response against P. multocida in bovine revealed 91% diagnostic sensitivity (DSN) and about 100% diagnostic specificity (DSP) at 25% cut off. OMP based indirect ELISA was found to be more specific, but less sensitive as compared to WCL based assay
    corecore