199 research outputs found

    Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set

    Get PDF
    Statistical imputation of genotype data is an important technique for analysis of genome-wide association studies (GWAS). We have built a reference dataset to improve imputation accuracy for studies of individuals of primarily European descent using genotype data from the Hap1, Omni1, and Omni2.5 human SNP arrays (Illumina). Our dataset contains 2.5-3.1 million variants for 930 European, 157 Asian, and 162 African/African-American individuals. Imputation accuracy of European data from Hap660 or OmniExpress array content, measured by the proportion of variants imputed with R^2^>0.8, improved by 34%, 23% and 12% for variants with MAF of 3%, 5% and 10%, respectively, compared to imputation using publicly available data from 1,000 Genomes and International HapMap projects. The improved accuracy with the use of the new dataset could increase the power for GWAS by as much as 8% relative to genotyping all variants. This reference dataset is available to the scientific community through the NCBI dbGaP portal. Future versions will include additional genotype data as well as non-European populations

    Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II

    Get PDF
    BACKGROUND: The International Agency for Research on Cancer classified both outdoor air pollution and airborne particulate matter as carcinogenic to humans (Group 1) for lung cancer. There may be associations with cancer at other sites; however, the epidemiological evidence is limited. OBJECTIVE: The aim of this study was to clarify whether ambient air pollution is associated with specific types of cancer other than lung cancer by examining associations of ambient air pollution with nonlung cancer death in the Cancer Prevention Study II (CPS-II). METHODS: Analysis included 623,048 CPS-II participants who were followed for 22 y (1982-2004). Modeled estimates of particulate matter with aerodynamic diameter <2.5microm (PM2.5) (1999-2004), nitrogen dioxide (NO2) (2006), and ozone (O3) (2002-2004) concentrations were linked to the participant residence at enrollment. Cox proportional hazards models were used to estimate associations per each fifth percentile-mean increment with cancer mortality at 29 anatomic sites, adjusted for individual and ecological covariates. RESULTS: We observed 43,320 nonlung cancer deaths. PM2.5 was significantly positively associated with death from cancers of the kidney {adjusted hazard ratio (HR) per 4.4 mug/m3=1.14 [95% confidence interval (CI): 1.03, 1.27]} and bladder [HR=1.13 (95% CI: 1.03, 1.23)]. NO2 was positively associated with colorectal cancer mortality [HR per 6.5 ppb=1.06 (95% CI: 1.02, 1.10). The results were similar in two-pollutant models including PM2.5 and NO2 and in three-pollutant models with O3. We observed no statistically significant positive associations with death from other types of cancer based on results from adjusted models. CONCLUSIONS: The results from this large prospective study suggest that ambient air pollution was not associated with death from most nonlung cancers, but associations with kidney, bladder, and colorectal cancer death warrant further investigation. https://doi.org/10.1289/EHP1249

    Comparing the Health Effects of Ambient Particulate Matter Estimated Using Ground-Based versus Remote Sensing Exposure Estimates

    Get PDF
    BACKGROUND: Remote sensing (RS) is increasingly used for exposure assessment in epidemiological and burden of disease studies, including those investigating whether chronic exposure to ambient fine particulate matter (PM2.5) is associated with mortality. OBJECTIVES: To compare relative risk estimates of mortality from diseases of the circulatory system for PM2.5 modeled from RS with that for PM2.5 modeled using ground-level information. METHODS: We geocoded the baseline residence of 668,629 American Cancer Society Cancer Prevention Study II (CPS-II) cohort participants followed from 1982 to 2004 and assigned PM2.5 levels to all participants using seven different exposure models. Most of the exposure models were averaged for the years 2002-2004, while one RS estimate was for a longer, contemporaneous period. We used Cox proportional hazards regression to estimate relative risks (RR) for the association of PM2.5 with circulatory mortality and ischemic heart disease. RESULTS: Estimates of mortality risk differed among exposure models. The smallest relative risk was observed for the RS estimates that excluded ground-based monitors for circulatory deaths (RR = 1.02 (95% confidence interval (CI): 1.00-1.04 per 10 microg/m3 increment in PM2.5). The largest relative risk was observed for the land use regression model that included traffic information (RR = 1.14, 95% CI: 1.11-1.17 per 10 microg/m3 increment in PM2.5). CONCLUSIONS: We found significant associations between PM2.5 and mortality in every model; however, relative risks estimated from exposure models using ground-based information were generally larger than those estimated with RS alone

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻ÂčÂČ) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻ÂčÂč) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻ÂčÂč) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻ÂčÂč), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻ÂčÂČ) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻ÂčÂč) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻ÂčÂč) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻ÂčÂč), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis
    • 

    corecore