1,178 research outputs found

    Strategies for Innovation and Sustainability: Insights from Leaders of Open Source Repository Organizations

    Get PDF
    4th International Conference on Open RepositoriesThis presentation was part of the session : Conference PresentationsThis panel convenes leaders of organizations that provide the major open repository software platforms featured at OR09. This session provides an opportunity to learn about the strategic processes behind the software - both from a technical and business perspective. The panelists will each provide an overview of their strategic approach open source and open repositories. Specific attention will be paid to strategies for promoting innovation, governance and organization models, and revenue and business models. The area of sustainability and business models for open source software is active and evolving and there is no one-size-fits-all solution. The panelists will discuss their views on ensuring the health and vitality of their platforms, addressing challenges such as: ensuring stability while promoting innovation; generating revenue; enabling community process, governance, and organizational development

    Response to Thackeray (2016) – The possibility of lichen growth on bones of Homo naledi: Were they exposed to light?

    Get PDF
    Thackeray1 questions the hypothesis of deliberate body disposal in the Rising Star Cave by Homo naledi, as proposed by Dirks and colleagues2. Thackeray proposes that lichens produced mineral staining on the skeletal remains of H. naledi. As lichens require some exposure to light, in Thackeray’s opinion, the presence of mineral staining necessitates either a direct entrance deep into the Rising Star Cave that once admitted light into the Dinaledi Chamber, or relocation of mineral-stained bones from a location exposed to light. Here we consider multiple lines of evidence that reject Thackeray’s hypothesis that lichens deposited mineral staining upon the surface of these skeletal remains. We welcome the opportunity to address the inferences presented by Thackeray, and further hope that this response may dispel misinterpretations of our research2, and of other areas of the scientific literature that bear upon site formation processes at work within the Rising Star Cave system

    The influence of surface energy on the self-cleaning of insect adhesive devices

    Get PDF
    The ability of insects to adhere to surfaces is facilitated by the use of adhesive organs found on the terminal leg segments. These adhesive pads are inherently 'tacky' and are expected to be subject to contamination by particulates, leading to loss of function. Here, we investigated the self-cleaning of ants and beetles by comparing the abilities of both hairy and smooth pad forms to selfclean on both high and low energy surfaces after being fouled with microspheres of two sizes and surface energies. We focused on the time taken to regain adhesive potential in unrestrained Hymenopterans (Polyrhachis dives and Myrmica scabrinodis) and Coccinellids (Harmonia axyridis and Adalia bipunctata) fouled with microspheres. We found that the reattainment of adhesion is influenced by particle type and size in Hymenopterans, with an interaction between the surface energy of the contaminating particle and substrate. In Coccinellids, reattainment of adhesion was only influenced by particle size and substrate properties. The adhesive organs of Coccinellids appear to possess superior self-cleaning abilities compared with those of Hymenopterans, although Hymenopterans exhibit better adhesion to both surface types. © 2012. Published by The Company of Biologists Ltd

    Intracranial Dural Metastasis of Ewing's Sarcoma: a Case Report

    Get PDF
    Although intracranial dural metastasis of Ewing's sarcoma is a very rare finding, its imaging characteristics are similar to those of its primary form in the central nervous system. Thus, this tumor must be considered in the differential diagnosis of extra-axial dural masses

    Josephson effect in a few-hole quantum dot

    Get PDF
    We use a Ge-Si core-shell nanowire to realise a Josephson field-effect transistor with highly transparent contacts to superconducting leads. By changing the electric field we gain access to two distinct regimes not combined before in a single device: In the accumulation mode the device is highly transparent and the supercurrent is carried by multiple subbands, while near depletion supercurrent is carried by single-particle levels of a strongly coupled quantum dot operating in the few-hole regime. These results establish Ge-Si nanowires as an important platform for hybrid superconductor-semiconductor physics and Majorana fermions

    Intraspecific variation in M1 enamel development in modern humans: implications for human evolution

    Get PDF
    The timing and sequence of enamel development, as well as enamel thickness, was documented for individual cusps (protoconid, hypoconid,metaconid, entoconid) in 15 unworn permanent lower first molars (M1s) from a sample of modern human juveniles. These data were compared with previously published data for modern and fossil species reported in the literature. Crown formation in all teeth was initiated in the protoconid and completed in the hypoconid. These cusps had significantly longer formation times (2.91 and 2.96 yrs, respectively) than the metaconid and entoconid (2.52 and 2.38 yrs, respectively), as well as thicker enamel, and each represented between 92e95% of the total crown formation time. Rates of enamel secretion in all cusps increased significantly from 2.97 mm in the inner enamel to 4.47 mm in the outer enamel. Two cusps of one individual were studied in more detail and did not follow this typical trajectory. Rather, there was a sharp decrease in the middle of enamel formation and then a slow recovery of secretion rates from the mid to outer enamel. This anomalous trajectory of enamel formation is discussed in the context of other nondental tissue responses to illness. Neither secretion rates nor periodicity differed significantly when compared between the cusps of each molar. Differences in cusp formation times, initiation, and completion suggest a relationship between the rates of enamel formation and enamel thickness. This fits with expectations about the mechanics of the chewing cycle and general lower molar morphology. A comparison with similar data for some nonhuman primates and fossil hominoids suggests this relationship may hold true across several primate taxa. Other aspects of enamel growth differed between this human sample and certain fossil species. The lower molars formed slowly over a longer period of time, which may reflect the extended growth period of modern humans. The methodological approach adopted in this study is discussed in the context of that used in other studies
    corecore