56 research outputs found

    Enrichment of Bacterioplankton Able to Utilize One-Carbon and Methylated Compounds in the Coastal Pacific Ocean

    Get PDF
    Understanding the temporal variations and succession of bacterial communities involved in the turnover of one-carbon and methylated compounds is necessary to better predict bacterial impacts on the marine carbon cycle and air-sea carbon fluxes. The ability of the local bacterioplankton community to exploit one-carbon and methylated compounds as main source of bioavailable carbon during a productive and less productive period was assessed through enrichment experiments. Surface seawater was amended with methanol and trimethylamine-N-oxide (TMAO), and bacterial abundance, production, oxygen consumption, as well as methanol turnover and growth rates of putative methylotrophs were followed. Bacterial community structure and functional diversity was examined through amplicon sequencing of 16S rRNA and methanol dehydrogenase (mxaF) marker genes. 2-fold increase in oxygen consumption and bacterial growth rates, and up to 4-fold higher methanol assimilation were observed in the amended seawater samples. Capacity to drawdown the substrates was similar between both experiments. In less productive conditions, methanol enriched obligate methylotrophs, especially Methylophaga spp., accounted for ∌70% of bacterial cells analyzed by fluorescence in situ hybridization and 16S rRNA gene sequencing, while TMAO enriched taxa belonged to Oceanospirillales and putative ÎČ- and Îł-Proteobacterial methylotrophs. In the experiment performed during the more productive period, bacterial communities were structurally resistant, suggesting that facultative organisms may have dominated the observed methylotrophic activity. Moreover, enrichment of distinct methylotrophic taxa but similar activity rates observed in response to different substrate additions suggests a functional redundancy of substrate specific marine methylotrophic populations. Marine bacterioplankton cycling of one-carbon and methylated compounds appears to depend on the system productivity, and hence may have predictable temporal impacts on air-sea fluxes of volatile organic compounds

    Major differences in dissolved organic matter characteristics and bacterial processing over an extensive brackish water gradient, the Baltic Sea

    Get PDF
    Dissolved organic matter (DOM) in marine waters is a complex mixture of compounds and elements that contribute substantially to the global carbon cycle. The large reservoir of dissolved organic carbon (DOC) represents a vital resource for heterotrophic bacteria. Bacteria can utilise, produce, recycle and transform components of the DOM pool, and the physicochemical characteristics of this pool can directly influence bacterial activity; with consequences for nutrient cycling and primary productivity. In the present study we explored bacterial transformation of naturally occurring DOM across an extensive brackish water gradient in the Baltic Sea. Highest DOC utilisation (indicated by decreased DOC concentration) was recorded in the more saline southerly region where waters are characterised by more autochthonous DOM. These sites expressed the lowest bacterial growth efficiency (BGE), whereas in northerly regions, characterised by higher terrestrial and allochthonous DOM, the DOC utilisation was low and BGE was highest. Bacterial processing of the DOM pool in the south resulted in larger molecular weight compounds and compounds associated with secondary terrestrial humic matter being degraded, and a processed DOM pool that was more aromatic in nature and contributed more strongly to water colour; while the opposite was true in the north. Nutrient concentration and stoichiometry and DOM characteristics affected bacterial activity, including metabolic status (BGE), which influenced DOM transformations. Our study highlights dramatic differences in DOM characteristics and microbial carbon cycling in sub-basins of the Baltic Sea. These findings are critical for our understanding of carbon and nutrient biogeochemistry, particularly in light of climate change scenarios.Fil: Rowe, Owen F.. Universidad de Umea; Suecia. UmeÄ Marine Sciences Centre; Suecia. University of Helsinki; FinlandiaFil: Dinasquet, Julie. Linnaeus University; Suecia. Universidad de Copenhagen; Dinamarca. University of California at San Diego. Scripps Institution of Oceanography; Estados UnidosFil: Paczkowska, Joanna Marianna. Universidad de Umea; Suecia. UmeÄ Marine Sciences Centre; SueciaFil: Figueroa, Daniela. Universidad de Umea; Suecia. UmeÄ Marine Sciences Centre; SueciaFil: Riemann, Lasse. Linnaeus University; Suecia. Universidad de Copenhagen; DinamarcaFil: Andersson, Agneta. Universidad de Umea; Suecia. UmeÄ Marine Sciences Centre; Sueci

    Major differences in dissolved organic matter characteristics and bacterial processing over an extensive brackish water gradient, the Baltic Sea

    Get PDF
    Dissolved organic matter (DOM) in marine waters is a complex mixture of compounds and elements that contribute substantially to the global carbon cycle. The large reservoir of dissolved organic carbon (DOC) represents a vital resource for heterotrophic bacteria. Bacteria can utilise, produce, recycle and transform components of the DOM pool, and the physicochemical characteristics of this pool can directly influence bacterial activity; with consequences for nutrient cycling and primary productivity. In the present study we explored bacterial transformation of naturally occurring DOM across an extensive brackish water gradient in the Baltic Sea. Highest DOC utilisation (indicated by decreased DOC concentration) was recorded in the more saline southerly region where waters are characterised by more autochthonous DOM. These sites expressed the lowest bacterial growth efficiency (BGE), whereas in northerly regions, characterised by higher terrestrial and allochthonous DOM, the DOC utilisation was low and BGE was highest. Bacterial processing of the DOM pool in the south resulted in larger molecular weight compounds and compounds associated with secondary terrestrial humic matter being degraded, and a processed DOM pool that was more aromatic in nature and contributed more strongly to water colour; while the opposite was true in the north. Nutrient concentration and stoichiometry and DOM characteristics affected bacterial activity, including metabolic status (BGE), which influenced DOM transformations. Our study highlights dramatic differences in DOM characteristics and microbial carbon cycling in sub-basins of the Baltic Sea. These findings are critical for our understanding of carbon and nutrient biogeochemistry, particularly in light of climate change scenarios.Peer reviewe

    Pelagic microbial heterotrophy in response to a highly productive bloom of <i>Phaeocystis antarctica</i> in the Amundsen Sea Polynya, Antarctica

    Get PDF
    Abstract Heterotrophic bacteria play a key role in marine carbon cycling, and understanding their activities in polar systems is important for considering climate change impacts there. One goal of the ASPIRE project was to examine the relationship between the phytoplankton bloom and bacterial heterotrophy in the Amundsen Sea Polynya (ASP). Bacterial abundance, production (BP), respiration, growth efficiency, and extracellular enzyme activity (EEA) were compared to nutrient and organic matter inventories, chlorophyll a (Chl a), viral and microzooplankton abundance, and net primary production (NPP). Bacterial production and respiration clearly responded (0.04–4.0 and 10–53 ”g C L−1 d−1, respectively) to the buildup of a massive Phaeocystis antarctica bloom (Chl a: 0.2–22 ”g L−1), with highest rates observed in the central polynya where Chl a and particulate organic carbon (POC) were greatest. The highest BP rates exceeded those reported for the Ross Sea or any other Antarctic coastal system, yet the BP:NPP ratio (2.1–9.4%) was relatively low. Bacterial respiration was also high, and growth efficiency (2–27%; median = 10%) was similar to oligotrophic systems. Thus, the integrated bacterial carbon demand (0.8–2.8 g C m−2 d−1) was a high fraction (25–128%; median = 43%) of NPP during bloom development. During peak bloom, activity was particle-associated: BP and EEA correlated well with POC, and size fractionation experiments showed that the larger size fraction (> 3 ”m) accounted for a majority (∌ 75%) of the BP. The community was psychrophilic, with a 5x reduction in BP when warmed to 20°C. In deeper waters, respiration remained relatively high, likely fueled by the significant downward particle flux in the region. A highly active, particle-associated, heterotrophic microbial community clearly responded to the extraordinary phytoplankton bloom in the ASP, likely limiting biological pump efficiency during the early season

    The influence of light and Water mass on bacterial population dynamics in the Amundsen Sea Polynya

    Get PDF
    Abstract Despite being perpetually cold, seasonally ice-covered and dark, the coastal Southern Ocean is highly productive and harbors a diverse microbiota. During the austral summer, ice-free coastal patches (or polynyas) form, exposing pelagic organisms to sunlight, triggering intense phytoplankton blooms. This strong seasonality is likely to influence bacterioplankton community composition (BCC). For the most part, we do not fully understand the environmental drivers controlling high-latitude BCC and the biogeochemical cycles they mediate. In this study, the Amundsen Sea Polynya was used as a model system to investigate important environmental factors that shape the coastal Southern Ocean microbiota. Population dynamics in terms of occurrence and activity of abundant taxa was studied in both environmental samples and microcosm experiments by using 454 pyrosequencing of 16S rRNA genes. We found that the BCC in the photic epipelagic zone had low richness, with dominant bacterial populations being related to taxa known to benefit from high organic carbon and nutrient loads (copiotrophs). In contrast, the BCC in deeper mesopelagic water masses had higher richness, featuring taxa known to benefit from low organic carbon and nutrient loads (oligotrophs). Incubation experiments indicated that direct impacts of light and competition for organic nutrients are two important factors shaping BCC in the Amundsen Sea Polynya

    Summer comes to the Southern Ocean: how phytoplankton shape bacterioplankton communities far into the deep dark sea

    Get PDF
    18 pages, 6 figures, 1 table, supporting information https://doi.org/10.1002/ecs2.2641During austral spring and summer, the coastal Antarctic experiences a sharp increase in primary production and a steepening of biotic and abiotic gradients that result from increased solar radiation and retreating sea ice. In one of the largest seasonally ice-free regions, the Amundsen Sea Polynya, pelagic samples were collected from 15 sites during a massive Phaeocystis antarctica bloom in 2010/2011. Along with a suite of other biotic and abiotic measurements, bacterioplankton were collected and analyzed for community structure by pyrosequencing of the 16S rRNA gene. The aims were to identify patterns in diversity and composition of heterotrophic bacterioplankton and to test mechanistic hypotheses for explaining these differences along variations in depth, water mass, phytoplankton biomass, and organic and inorganic nutrients. The overall goal was to clarify the relationship between primary producers and bacterioplankton community structure in the Southern Ocean. Results suggested that both epipelagic and mesopelagic bacterioplankton communities were structured by phytoplankton blooming in the euphotic zone. As chlorophyll a (chl-a) increased in surface waters, the abundance of surface bacterioplankton increased, but their diversity decreased. Similarity in bacterioplankton community composition between surface-water sites increased as the bloom progressed, suggesting that algal blooms may homogenize surface-water bacterioplankton communities at larger spatial scales. Below the euphotic zone, the opposite relationship was found. Mesopelagic bacterioplankton diversity increased with increasing chl-a in the overlying surface waters. This shift may be promoted by several factors including local increase in organic and inorganic nutrients from particles sinking out of the euphotic zone, an increase in niche differentiation associated with the particle flux, interactions with deep-dwelling macrozooplankton, and release from competition with primary producers. Additional multivariate analyses of bacterioplankton community structure and nutrient concentrations revealed distinct depth horizons, with bacterioplankton communities having maximum alpha and beta diversity just below the euphotic zone, while nutrient composition gradually homogenized with increasing depth. Our results provide evidence for bloom-driven (bottom-up) control of bacterioplankton community diversity in the coastal Southern Ocean and suggest mechanisms whereby surface processes can shape the diversity of bacterioplankton communities at great depthThe study was funded by the Swedish Research Council (grants to SB and LR) and the U.S. National Science Foundation through the ASPIRE project (ANT‐0839069

    A two-component parameterization of marine ice-nucleating particles based on seawater biology and sea spray aerosol measurements in the Mediterranean Sea

    Get PDF
    Ice-nucleating particles (INPs) have a large impact on the climate-relevant properties of clouds over the oceans. Studies have shown that sea spray aerosols (SSAs), produced upon bursting of bubbles at the ocean surface, can be an important source of marine INPs, particularly during periods of enhanced biological productivity. Recent mesocosm experiments using natural seawater spiked with nutrients have revealed that marine INPs are derived from two separate classes of organic matter in SSAs. Despite this finding, existing parameterizations for marine INP abundance are based solely on single variables such as SSA organic carbon (OC) or SSA surface area, which may mask specific trends in the separate classes of INP. The goal of this paper is to improve the understanding of the connection between ocean biology and marine INP abundance by reporting results from a field study and proposing a new parameterization of marine INPs that accounts for the two associated classes of organic matter. The PEACETIME cruise took place from 10 May to 10 June 2017 in the Mediterranean Sea. Throughout the cruise, INP concentrations in the surface microlayer (INPSML) and in SSAs (INPSSA) produced using a plunging aquarium apparatus were continuously monitored while surface seawater (SSW) and SML biological properties were measured in parallel. The organic content of artificially generated SSAs was also evaluated. INPSML concentrations were found to be lower than those reported in the literature, presumably due to the oligotrophic nature of the Mediterranean Sea. A dust wet deposition event that occurred during the cruise increased the INP concentrations measured in the SML by an order of magnitude, in line with increases in iron in the SML and bacterial abundances. Increases in INPSSA were not observed until after a delay of 3 days compared to increases in the SML and are likely a result of a strong influence of bulk SSW INPs for the temperatures investigated (T=−18 ∘C for SSAs, T=−15 ∘C for SSW). Results confirmed that INPSSA are divided into two classes depending on their associated organic matter. Here we find that warm (T≄−22 ∘C) INPSSA concentrations are correlated with water-soluble organic matter (WSOC) in the SSAs, but also with SSW parameters (particulate organic carbon, POCSSW and INPSSW,−16C) while cold INPSSA (T<−22 ∘C) are correlated with SSA water-insoluble organic carbon (WIOC) and SML dissolved organic carbon (DOC) concentrations. A relationship was also found between cold INPSSA and SSW nano- and microphytoplankton cell abundances, indicating that these species might be a source of water-insoluble organic matter with surfactant properties and specific IN activities. Guided by these results, we formulated and tested multiple parameterizations for the abundance of INPs in marine SSAs, including a single-component model based on POCSSW and a two-component model based on SSA WIOC and OC. We also altered a previous model based on OCSSA content to account for oligotrophy of the Mediterranean Sea. We then compared this formulation with the previous models. This new parameterization should improve attempts to incorporate marine INP emissions into numerical models

    Microzooplankton distribution in the Amundsen Sea Polynya (Antarctica) during an extensive Phaeocystis antarctica bloom

    Get PDF
    10 pages, 7 figures, 1 table, supplementary material https://doi.org/10.1016/j.pocean.2018.10.008In Antarctica, summer is a time of extreme environmental shifts resulting in large coastal phytoplankton blooms fueling the food web. Despite the importance of the microbial loop in remineralizing biomass from primary production, studies of how microzooplankton communities respond to such blooms in the Southern Ocean are rather scarce. Microzooplankton (ciliate and dinoflagellate) communities were investigated combining microscopy and 18S rRNA sequencing analyses in the Amundsen Sea Polynya during an extensive summer bloom of Phaeocystis antarctica. The succession of microzooplankton was further assessed during a 15-day induced bloom microcosm experiment. Dinoflagellates accounted for up to 59 % of the microzooplankton biomass in situ with Gymnodinium spp., Protoperidium spp. and Gyrodinium spp. constituting 89 % of the dinoflagellate biomass. Strobilidium spp., Strombidium spp. and tintinids represented 90 % of the ciliate biomass. Gymnodinium, Gyrodinium and tintinnids are known grazers of Phaeocystis, suggesting that this prymnesiophyte selected for the key microzooplankton taxa. Availability of other potential prey, such as diatoms, heterotrophic nanoflagellates and bacteria, also correlated to changes in microzooplankton community structure. Overall, both heterotrophy and mixotrophy appeared to be key trophic strategies of the dominant microzooplankton observed, suggesting that they influence carbon flow in the microbial food web through top-down control on the phytoplankton communityThis work was supported by the Swedish Research Council [grant 2008-6430] to S. Bertilsson and L. Riemann and [grant 824-2008-6429] to P.-O. Moksnes and J. Havenhand, and by the US National Science Foundation through the ASPIRE project [NSF OPP-0839069] to P. YagerPeer Reviewe
    • 

    corecore