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Abstract. During austral spring and summer, the coastal Antarctic experiences a sharp increase in pri-
mary production and a steepening of biotic and abiotic gradients that result from increased solar radiation
and retreating sea ice. In one of the largest seasonally ice-free regions, the Amundsen Sea Polynya, pelagic
samples were collected from 15 sites during a massive Phaeocystis antarctica bloom in 2010/2011. Along
with a suite of other biotic and abiotic measurements, bacterioplankton were collected and analyzed for
community structure by pyrosequencing of the 16S rRNA gene. The aims were to identify patterns in
diversity and composition of heterotrophic bacterioplankton and to test mechanistic hypotheses for
explaining these differences along variations in depth, water mass, phytoplankton biomass, and organic
and inorganic nutrients. The overall goal was to clarify the relationship between primary producers and
bacterioplankton community structure in the Southern Ocean. Results suggested that both epipelagic and
mesopelagic bacterioplankton communities were structured by phytoplankton blooming in the euphotic
zone. As chlorophyll a (chl-a) increased in surface waters, the abundance of surface bacterioplankton
increased, but their diversity decreased. Similarity in bacterioplankton community composition between
surface-water sites increased as the bloom progressed, suggesting that algal blooms may homogenize sur-
face-water bacterioplankton communities at larger spatial scales. Below the euphotic zone, the opposite
relationship was found. Mesopelagic bacterioplankton diversity increased with increasing chl-a in the over-
lying surface waters. This shift may be promoted by several factors including local increase in organic and
inorganic nutrients from particles sinking out of the euphotic zone, an increase in niche differentiation
associated with the particle flux, interactions with deep-dwelling macrozooplankton, and release from
competition with primary producers. Additional multivariate analyses of bacterioplankton community
structure and nutrient concentrations revealed distinct depth horizons, with bacterioplankton communities
having maximum alpha and beta diversity just below the euphotic zone, while nutrient composition grad-
ually homogenized with increasing depth. Our results provide evidence for bloom-driven (bottom-up)
control of bacterioplankton community diversity in the coastal Southern Ocean and suggest mechanisms
whereby surface processes can shape the diversity of bacterioplankton communities at great depth.

Key words: Amundsen Sea Polynya; Antarctica; bacterioplankton diversity; chlorophyll a; Phaeocystis antarctica;
phytoplankton bloom; Southern Ocean.
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INTRODUCTION

In seasonally ice-free waters of the Southern
Ocean, such as the Amundsen Sea Polynya
(ASP), seasonal blooms of phytoplankton pro-
vide the main source of organic matter. Fixation
and export of atmospheric carbon into the ocean
interior occur via vertical mixing, partial decom-
position, and eventual sinking of photosyntheti-
cally produced organic material. Polar oceans
host an active (Ducklow and Yager 2007, Wil-
liams et al. 2016) and diverse (Yager et al. 2001,
Ghiglione et al. 2012, Delmont et al. 2014, Kim
et al. 2014, Richert et al. 2015) bacterioplankton
community. At any given location and time in the
environmentally patchy ASP (Yager et al. 2012,
Mu et al. 2014), several factors could play a role
in shaping the bacterioplankton community,
including interactions with the phycosphere (Del-
mont et al. 2014, 2015, Seymour et al. 2017),
niche differentiation associated with the particle
flux or marine snow (Azam 1998, Kiørboe and
Jackson 2001, Azam and Malfatti 2007), and the
bioavailability of particulate organic carbon
(Ducklow et al. 2015, Williams et al. 2016) and
dissolved organic compounds (Sipler and Con-
nelly 2015, Dinasquet et al. 2017), which repre-
sent potential substrates for heterotrophic
bacteria. Other factors may include irradiance
(Bryant and Frigaard 2006, G�omez-Consarnau
et al. 2007) as well as interactions across trophic
levels, in particular the local extent of primary
productivity (Arrigo and van Dijken 2003, Alder-
kamp et al. 2012, 2015, Schofield et al. 2015) and
macrozooplankton (Wilson et al. 2015). Addition-
ally, physical gradients that shape hydrography
and separate water masses based on tempera-
ture–salinity signatures can also control the dis-
tribution of microbial communities (Galand et al.
2010, Agogu�e et al. 2011, Alonso-S�aez et al. 2011,
Ghiglione et al. 2012, Hamdan et al. 2013). Three
major water masses were present in the ASP at
the time of sampling (Yager et al. 2012, 2016):
Antarctic Surface Water (AASW), Winter Water
(WW), and modified Circumpolar Deep Water
(mCDW; Randall-Goodwin et al. 2015).

The composition of the bacterioplankton com-
munity within the ASP varies with depth (Del-
mont et al. 2014, 2015, Kim et al. 2014, Richert
et al. 2015). A major portion of the bacterioplank-
ton community in the seasonal surface waters of
the ASP are light-adapted, fast-growing copi-
otrophs, including members of the Flavobacteria,
Polaribacter, Gammaproteobacteria SAR92, and
Oceanospirillaceae. The bacterioplankton commu-
nities within deeper mesopelagic waters are com-
prised of a more diverse heterotrophic community
including numerous representatives of, for exam-
ple, the classes Flavobacteriia, Alphaproteobacte-
ria, and Gammaproteobacteria (Delmont et al.
2014, 2015, Kim et al. 2014, Richert et al. 2015).
Metagenome data demonstrate that an olig-
otrophic life strategy is dominant in the ocean’s
free-living microbial populations (Lauro et al.
2009).
At the time of sampling (13 December 2010–15

January 2011), the polynya was characterized by
the initiation and buildup of a massive phyto-
plankton bloom consisting mostly of the colonial
microeukaryote Phaeocystis antarctica (Yager et al.
2016), and the downward particle flux was
mainly phytodetrital aggregates (Ducklow et al.
2015), consistent with the relatively low numbers
and subsurface maxima of macrozooplankton
observed during ASPIRE (Wilson et al. 2015).
The general goal was to identify how the local
environment, in particular the local phytoplank-
ton biomass, acted upon the composition and
diversity of heterotrophic bacterioplankton com-
munities during the ephemeral phytoplankton
bloom characteristic of the coastal Antarctic.
The first question was how the algal bloom

would affect bacterial community diversity at the
surface. In their review, Horner-Devine et al.
(2004) cite multiple lines of evidence for how bac-
terial diversity varies with primary productivity
in ways similar to plants and animals, with high
productivity increasing homogeneity and reduc-
ing diversity, especially for some taxonomic
groups. In the ASP, bacterial biomass and activ-
ity increases with phytoplankton biomass (Wil-
liams et al. 2016), but bacterial carbon adds up to
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only about 1–2% of algal carbon, with microzoo-
plankton and zooplankton biomass adding up to
about 5% (Yager et al. 2016). Thus, the massive
bloom of a near-monoculture of Phaeocystis
antarctica dominates the available substrate for
bacteria. Such substrate homogeneity might
reduce bacterial diversity. Competition with phy-
toplankton for nutrients (iron in particular)
might also limit heterotrophic bacterial diversity
—but not abundance—by favoring a bacterio-
plankton community composed primarily of
opportunistic or mutualistic taxa with high-affi-
nity siderophores (Reid et al. 1993, Barbeau et al.
2001). Alternatively, epipelagic bacterioplankton
communities could simply represent stochastic
subsets of existing communities, in which case
no relationship would be observed between bac-
terial community diversity and phytoplankton
productivity.

The second question was about the fate of the
bloom and its potential impact on the mesopela-
gic bacterial community structure. The sediment-
ing flux of detritus is known to be an important
factor structuring bacterioplanktonic communi-
ties below the euphotic zone (Pelve et al. 2017),
and most of the ocean’s surface-generated
organic matter undergoes recycling in the meso-
pelagic ocean (Buesseler et al. 2007, Buesseler
and Boyd 2009, Giering et al. 2014). Carbon bud-
gets suggest, and measurements confirm, that
significant mesopelagic bacterial activity occurs
in the ASP (Ducklow et al. 2015, Williams et al.
2016, Yager et al. 2016) below the bloom. Here,
we asked whether the deep bacterial community
in the ASP shift in response to the sinking bloom,
or if it was it poised from the start and steady
throughout the season. A related question was
whether or not the arrival of the sinking particles
increases diversity.

To address these questions, physical character-
istics and planktonic communities were sampled
at five depth horizons that covered stations along
the entire ASP and its edges during the austral
summer of 2010–2011. Stations covered the full
range of bloom stages (pre-bloom in the pack ice
to high bloom in the central open polynya; Yager
et al. 2016). Correlation and regression modeling
and multivariate statistical analyses were applied
to explore linkages between environmental gra-
dients and bacterial abundance and diversity.
Our results suggest that the phytoplankton

bloom clearly impacts bacterioplankton commu-
nity composition across the surface waters of the
polynya and deep into the mesopelagic.

METHODS

Sampling
Sampling was conducted during the Amund-

sen Sea Polynya International Research Expedi-
tion (ASPIRE) in the late spring and early austral
summer (November 2010–January 2011) when
the research icebreaker RVIB Nathaniel B. Palmer
cruised the Amundsen Sea Polynya (71–75°S,
110–120°W) and its marginal zones (Yager et al.
2012, 2016). To the south, the polynya meets the
Antarctic continent, surrounded by ice shelves
(such as the Dotson Ice Shelf and Getz Ice Shelf)
and the Antarctic land mass. The northern bor-
der represents the marginal ice zone and pack ice
between the polynya and the open ocean. Sam-
pling sites covered all parts of the polynya,
including sites close to the continent and ice
shelves, within the open polynya, close to the
marginal ice zones and underneath the pack ice.
Altogether, vertical sample profiles were col-
lected from 15 stations (Fig. 1).
At each station, probes coupled to an array of

remotely controlled sampling bottles were used
for parameter acquisition and sampling. This
CTD (conductivity–temperature depth probe)
rosette included sensors reading depth-resolved
profiles of temperature (°C), conductivity (S/m),
oxygen (mg/L), chlorophyll a (chl-a) concentra-
tion (mg/m3, via chl-a fluorescence), and photo-
synthetically active radiation (%PAR) for each
cast (SBE 911; Sea-Bird Electronics, Bellevue,
Washington, USA). Sensor profiles were moni-
tored during the lowering of the CTD through
the water column. Based on these profiles, five
depths were chosen for seawater sampling dur-
ing ascent of the CTD. Typically, the five depths
chosen corresponded to (1) near surface (Horizon
1: H1surf); (2) chl-a fluorescence maximum (Hori-
zon 2: H2cmax); (3) base of the high-chlorophyll
layer, corresponding to the depth at which the
fluorescence drops to a negligible level (Horizon
3: H3csub); (4) mesopelagic temperature mini-
mum above the halocline (Horizon 4: H4Tmin); (5)
near-bottom temperature maximum below the
halocline (Horizon 5: H5Tmax); and (6) bottom
water (Horizon 6: H6bot, collected at a subset of

 ❖ www.esajournals.org 3 March 2019 ❖ Volume 10(3) ❖ Article e02641

RICHERT ET AL.



stations). At each depth, seawater was collected
in 12-L Niskin bottles attached to a 24-bottle
rosette (SBE 32; Sea-Bird Electronics).

Grouping of biotic samples along the depth
gradient was done following standard proce-
dures in two alternate and non-exclusive ways,
depending on the analysis: (i) by water mass into
Antarctic Surface Water (AASW), Winter Water
(WW), or modified Circumpolar Deep Water
(mCDW) based on their temperature–salinity
signature (following Randall-Goodwin et al.
2015) and a fourth category Mix for samples that

had temperature/salinity values intermediate
between WW and mCDW; or ii) by the fixed fac-
tor depth horizons at which the samples were
taken (as described in this section): (1) H1surf, (2)
H2cmax, (3) H3csub, (4) H4Tmin (deep Winter
Water), (5) H5Tmax (upper mCDW), and (6) H6bot
(lower mCDW). Note that grouping (ii) repre-
sents a more highly resolved classification, with
Horizons 1–3 in the euphotic region and Hori-
zons 4–6 in the mesophotic region, and that
grouping (i) and some divisions between hori-
zons in grouping (ii) are dependent upon

N

Fig. 1. Sampling locations (labeled with event number; see Table 1; Appendix S2: Table S1 for further details)
within and around the Amundsen Sea Polynya, with its ice margins at the time of sampling. Background image
from National Snow and Ice Data Center (NSIDC; Haran et al. 2005).

 ❖ www.esajournals.org 4 March 2019 ❖ Volume 10(3) ❖ Article e02641

RICHERT ET AL.



halocline and thermocline boundaries and thus
have variable depths among sampling stations.
The extent to which these classification schemes
differ in explanatory power for determining the
diversity and structure of heterotrophic bacterio-
plankton communities is discussed below.

Bacterial community analysis
DNAwas extracted from 0.2-lm filtered seawa-

ter samples using a phenol–chloroform extraction
(Riemann et al. 2000). Prior to extraction, micro-
bial cells were enzymatically digested for 30 min
with lysozyme at 37°C followed by an overnight
digestion with Proteinase K (both 20 mg/mL;
Sigma-Aldrich, Darmstadt, Germany) at 55°C
(Bostr€om et al. 2004). The 16S rRNA genes were
amplified using the bacterial primers Bakt_341F
(CCTACGGGNGGCWGCAG) and Bakt_805R
(GACTACHVGGGTATCTAATCC) with 454-Lib-L
adapters and sample-specific barcodes on the
reverse primer (Herlemann et al. 2011). Barcodes
for specific samples are found in Appendix S2:
Table S1. Triplicate 20-lL PCRs for each sample
were carried out with 10–70 ng extracted environ-
mental DNA as template, and Phusion Hot Start
High-Fidelity DNA Polymerase (Thermo Scien-
tific, G€oteborg, Sweden) at the thermal conditions:
initial denaturation at 98°C for 30 s, followed by
25 cycles of an initial 98°C denaturation for 30 s,
subsequent annealing at 50°C for 30 s, and 30-s
extension at 72°C. These 25 cycles were followed
by a final 7-min extension at 72°C. Triplicate reac-
tions were pooled, purified (Agencourt AMPure
XP Kit; Beckman Coulter, Bromma, Sweden), and
quantified (PicoGreen; Invitrogen, Stockholm,
Sweden). Equimolar amounts of amplicons from
each sample were pooled and sequenced by 454
pyrosequencing using Titanium chemistry at the
SNP&SEQ SciLifeLab platform hosted by Upp-
sala University (Sweden).

In order to obtain a list of observed operational
taxonomic units (OTUs) suitable for statistical
analyses, low-quality sequences were removed
from the dataset, and sequencing noise was
reduced using AmpliconNoise v1.24 (Quince
et al. 2011) with default parameters. Ampli-
conNoise implements algorithms that remove
PCR and 454-pyrosequencing errors, as well as
the tool Perseus, which removes chimeric
sequences. Reads that did not carry the exact pri-
mer sequence were also removed. The raw

sequence data are archived at the European
Nucleotide Archive (ENA) under accession no.
PRJEB4866. With a length cutoff of 425 base pairs
(bp), the remaining reads were processed using
the Quantitative Insights Into Microbial Ecology
(QIIME) software v1.3 (Caporaso et al. 2010).
Sequences were clustered into OTUs at 97% pair-
wise identity using UCLUST (Edgar 2010). Taxo-
nomic assignments of representative sequences
from each OTU were obtained according to the
SILVA111 database (Quast et al. 2013) by using
the RDP classifier implemented in QIIME (Wang
et al. 2007). OTUs that were assigned to the same
taxa were not merged. After clustering and
taxonomy assignment, the raw data table con-
tained 214,949 reads. Singleton sequences were
removed (7894 reads), as well as reads from
OTUs that could not be classified (2094 reads),
and eukaryotic chloroplasts, which were identi-
fied as Cyanobacteria (25,025 reads) and Archaea
(1748 reads). The remaining 178,188 reads were
used for further analyses.

Bacterial abundance
Samples (1.5 mL) for bacterial enumeration

were fixed with EM-grade glutaraldehyde (1%
final conc.; Sigma, Darmstadt, Germany), flash-
frozen in liquid N2, and stored at �80°C. Bacteria
were enumerated in a FACSCanto II flow
cytometer (Becton Dickinson, Franklin Lakes,
New Jersey, USA) after staining the fixed cells
with SYBR Green (Invitrogen, T�astrup, Denmark;
Gasol and del Giorgio 2000). The sample volume
was calibrated with fluorescent beads.

Nutrient and organic matter data
Water samples were collected, pre-filtered

(0.45 lm), and analyzed for nitrite, nitrate,
ammonia, silicate, and orthophosphate using an
autoanalyzer onboard the ship (for details, see
Yager et al. 2016). All samples for dissolved
organic carbon (DOC), total nitrogen (TN), par-
ticulate organic carbon (POC), and particulate
organic nitrogen (PON) analysis were collected,
and analyzed using standard protocols (for
details, see Yager et al. 2016).

Chlorophyll a fluorescence: a proxy for
phytoplankton biomass and bloom stage
Phytoplankton biomass was estimated by

Chlorophyll a (chl-a) fluorescence in several
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different ways. Discrete samples were collected
using Niskin bottles. Some were analyzed ship-
board with a fluorometer calibrated with spinach
standards; others were analyzed using HPLC
(Alderkamp et al. 2015, Yager et al. 2016). Con-
tinuous chl-a profiles were also obtained at each
station using calibrated in vivo chl-a fluorescence
traces from the CTD probe. When using chl-a as
a proxy for phytoplankton, it was recognized
that photopigment content additionally depends
on taxonomy and physiological state of the phy-
toplankton (Longhurst and Glen Harrison 1989).
Particulate organic carbon (POC) was collected
from the water column at the same depths as chl-
a. Concentrations of chl-a correlated positively
with POC concentrations (Yager et al. 2016), with
the POC:chl-a ratio in the upper water column
ranging from 37 to 115 (median = 44).

For each station, the primary measure of the
bloom extent was the maximum chl-a concentra-
tion observed at each station, chl-amax. A second
measure was also used: integrated chl-a, calcu-
lated via numerical integration of chl-a concentra-
tion profiles (for further methodological details,
see Appendix S1). Integrated chl-a represents chl-
a concentration throughout the depth profile of
each station and was positively correlated with
chl-a max (Pearson’s q = 0.802, P < 0.001; Appen-
dix S1: Fig. S2). The main text presents correla-
tions vs. chl-a max; there are corresponding
regression results vs. both chl-a max and inte-
grated chl-a provided in Appendix S2.

During analysis, unusually noisy chl-a traces
were observed for Station 5 (Event 5.04; Appendix
S1: Fig. S1) that might have been due to fouling of
the CTD sensor. Thus, Station 5 was excluded
from all regressions involving estimates of inte-
grated chl-a. For further details, see Appendix S1.

Diversity calculations
Operational taxonomic units richness of samples

was estimated throughout the water column using
rarefaction estimates calculated with estimated_ob-
servation_richness.py in QIIME 1.9.1 (Caporaso
et al. 2010, Colwell et al. 2012). The mean number
of reads per sample was 2481 � 966 (SD) reads
(range 751–5600 reads), so richness results are pre-
sented using rarefaction with sample size N = 750.
Rarefaction curves for a range of sample sizes are
presented in Appendix S2: Fig. S1. See Appendix
S1 for further methodological details.

Diversity measures were compared and con-
trasted along environmental gradients using corre-
lation and regression analyses; Pearson correlation
coefficients (q) are presented in the main text and
provide corresponding regression results includ-
ing slope estimates in Appendix S2. Alpha diversity
was quantified using both Shannon’s H (Shannon
1948) and Simpson’s D (Simpson 1949) measures
to show that the results are qualitatively robust to
our choice of alpha diversity metric. Results in the
main text use Shannon’s H, and corresponding
results using Simpson’s D are in Appendix S2.
Patterns of bacterioplankton community turnover
were examined using delta divergence, which
expresses the divergence in diversity between
pairs of samples (Scofield et al. 2012).
Beta diversity was estimated using multivariate

ordination methods applied to pairwise Bray-
Curtis dissimilarity, which account for both pres-
ence/absence of OTUs and shifts in their relative
abundances (Bray and Curtis 1957), and contrast
this with pairwise Euclidean dissimilarity in
nutrient levels between samples (Ramette 2007,
Legendre and Birks 2012) to examine the extent to
which nutrient availability may structure hetero-
trophic bacterioplankton community diversity.
Multivariate homogeneity of group dispersion
was also compared to environmental factors that
separate the groups (Anderson et al. 2006).

Statistical analysis
All statistical data analyses were done in RStu-

dio using R version 3.3.2. A custom script was
used (available at https://github.com/douglasgscof
ield/pubs/tree/master/Richert-et-al-1) together with
scripts for ecological diversity analysis available at
https://github.com/douglasgscofield/dispersalDiv
ersity (Scofield et al. 2012) to calculate most
diversity statistics directly from the OTU table.
Bacterioplankton richness and abundance was
compared between depth horizons using ANOVA
(function aov), and depth horizon means were
compared using Tukey post hoc tests (function
TukeyHSD). Samples from the deepest depth
horizon H6bot (lower mCDW) were collected
from just two stations; for these comparisons,
these samples were lumped with those from the
H5Tmax (upper mCDW) depth horizon. For com-
parisons along environmental gradients, Pearson
correlation coefficients (function cor.test) and lin-
ear regressions (function lm) were calculated.
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For multivariate statistical analysis, the vegan
package version 2.4-2 in R was used (Oksanen
et al. 2013). The number of reads per taxon was
standardized by dividing by the total number of
reads per sample. The nutrient data and other
environmental parameters were transformed lin-
early to range between 0 and 1 corresponding to
the minimum and maximum values across all
collected samples (function decostand, method
range). Pairwise dissimilarity matrices were cal-
culated among samples for OTUs (N = 72 sam-
ples) using Bray-Curtis dissimilarity with
presence–absence standardization (function veg-
dist). The two OTU samples from H6bot were
included within the overlying H5Tmax depth
horizon for these analyses. Pairwise dissimilarity
matrices were calculated among the subset of
samples having full seawater nutrient content
available (N = 43 samples) using Euclidean dis-
tance (function vegdist). None of these samples
were assigned to the H6bot depth horizon. Pair-
wise dissimilarities were used to calculate group
dispersions for OTUs and nutrients within each
of the five upper depth horizons (H1surf –
H5Tmax) via PCoA and calculation of group-spe-
cific centroids and sample-specific distances
from the centroid, as implemented in the func-
tion betadisper following the method of Ander-
son (2006). In brief, the centroid of a group is its
spatial median, the point that minimizes the
sum of distances to all sample-specific points
belonging to that group. The dispersion of sam-
ples within each group is the distribution of dis-
tances of samples from the centroid so
calculated. Tests for homogeneity of dispersions
were performed with Tukey post hoc tests as
implemented in function TukeyHSD.betadisper.
Our interest was primarily in analyzing homo-
geneity of depth horizon-specific dispersions;
apart from qualitative comparisons, we do not
include analysis of the group-specific centroids
per se. For the 43 samples having both OTU and
complete nutrient content data, a non-metric
multidimensional scaling (NMDS, function
metaMDS) was performed with dissimilarity
matrices calculated for OTUs and nutrients as
described in this section. The NMDS plot for
OTUs was annotated using environmental vec-
tors for nutrients and for phytoplankton bio-
mass, bacterial abundance, and depth, and the
NMDS plot for nutrients using environmental

vectors for phytoplankton biomass, bacterial
abundance, and depth (all annotations with
environmental vectors used function envfit). The
dissimilarity matrices for OTUs and nutrient
content were compared among these samples
using a Mantel test (function mantel, Spearman
rank correlation) with P value calculated via 999
row/column permutations as implemented in
the function.

RESULTS

Inventories
From the 15 stations that spanned the entire

region (Fig. 1, Table 1) and represented early,
mid-, and high-bloom stages (Yager et al. 2016), a
total of 72 water samples covered large environ-
mental ranges in temperature (�1.8 to + 1.3°C),
salinity (33.4–34.7), bacterial abundance (0.5–
8 9 108 cells/L), and dissolved organic carbon
(0.59–1.44 ppm; Appendix S2: Tables S1, S5).
Other measured nutrients (Appendix S2: Table S5)
included silicate (SiO4

4�; 66.8–115 lmol/L); total
nitrogen (TN; 0.17–0.52 ppm); nitrate (NO3

�;
9.3–34.2 lmol/L); nitrite (NO2

�; 0–0.06); and
orthophosphate (PO4

3�; 0.76–2.2 lmol/L). The sta-
tion depth ranged from 400 to 1250 m (Table 1).
Chl-a varied with depth and across the euphotic
zone of the ASP with peak bloom intensity near
the surface in the central polynya (Appendix S1:
Fig. S1). The maximum concentration of chl-a for
each station (chl-a max) ranged from 0 to 27 mg/
m3, correlated with integrated chlorophyll a at
each station (Pearson’s q = 0.802, P < 0.001;
Appendix S1: Fig. S2), and corresponded well
with bloom stage (Yager et al. 2016).
Bacterioplankton abundance decreased with

depth (Fig. 2b–d; ANOVA among depth hori-
zons, F4,66 = 15.11, P <0.001), but was similar
among the upper three depth horizons (Tukey
post hoc tests; H1surf vs. H2cmax P = 0.99, H2cmax

vs. H3csub P = 0.30, H1surf vs. H3csub P = 0.095)
and between the deep Winter Water and com-
bined mCDW depth horizons (Tukey post hoc
test, H4Tmin vs. H5Tmax + H6bot, P = 0.99).

Bacterioplankton community richness and
abundance throughout the water column
Bacterioplankton community richness varied

among stations (Fig. 2a), with the highest cumu-
lative richness at Station 4 (late spring in the pack
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ice near the shelf break) and the lowest at Sta-
tions 66 and 68 (also in the pack ice, but later in
the season). Richness increased with depth
(Fig. 2b–c; ANOVA among depth horizons,
F4,67 = 38.45, P <0.001). It was similar between
H1surf and H2cmax in the photic zone (Tukey post
hoc test, P � 1) and also similar between meso-
pelagic horizons H4Tmin and H5Tmax + H6bot
(Tukey post hoc test, P � 1). Bacterioplankton
richness at H3csub differed from and was inter-
mediate to those in the overlying H2cmax and the
underlying H4Tmin (Tukey post hoc tests;
P <0.001 and P <0.01, respectively). Rarefaction
curves showed that the increase in bacterioplank-
ton community richness with depth was robust
to the selection of rarefaction sample number
(Appendix S2: Fig. S1).

Surface bacterioplankton communities changed
with the bloom progression

Among samples from AASW, there was a neg-
ative correlation between the magnitude of a
station’s chl-a-max (bloom stage) and bacterio-
plankton alpha diversity measured by Shannon’s
H (Fig. 3a; Pearson’s q = �0.631, t21 = �3.725,
P <0.01). There were similar negative correla-
tions between the magnitude of the chl-a max
and Simpson’s D (Pearson’s q = �0.603, t21 =
�3.462, P = 0.002) and bacterioplankton richness
(Pearson’s q = �0.722, t21 = �4.784, P <0.001).
This decrease in alpha diversity with increasing

bloom extent (chl-a max) occurred despite a
strong positive correlation between bacterio-
plankton abundance and the chl-a max at each
station (Fig. 3b; Pearson’s q = 0.803, t21 = 6.169,
P <0.001).
Bacterial community delta divergence among

AASW samples also decreased as the pairwise
mean chl-a max of the stations increased (Fig. 4a;
Pearson’s q = �0.292, t251 = �4.831, P <0.001).
The correlation was stronger when examined just
among pairs of samples from H2cmax (Fig. 4b;
Pearson’s q = �0.445, t64 = �3.974, P <0.001).

Bacterioplankton communities below surface
waters also respond to bloom progression
Similar to above, a negative correlation was

observed between alpha diversity and bloom
extent among samples from H2cmax (Fig. 5a;
Pearson’s q = �0.628, t13 = �2.910, P = 0.012).
Surprisingly, this relationship reversed to a posi-
tive correlation for the horizon H3csub below the
euphotic zone (Fig. 5b; Pearson’s q = 0.532,
t12 = 2.177, P = 0.050). The correlation remained
positive, although not statistically significant, for
H4Tmin (deep WW; Fig. 5c; Pearson’s q = 0.364,
t12 = 1.360, P = 0.200) and H5Tmax (upper mCDW;
Fig. 5d; Pearson’s q = 0.364, t13 = �0.491, P =
0.632). Correlations using integrated chl-a as an
alternative measure of bloom extent were consid-
erably weaker below H2cmax while remaining
qualitatively similar (Appendix S2: Table S3).

Table 1. Station parameters for ASPIRE as mapped in Fig. 1.

Station†
(event) Latitude Longitude

Seafloor
depth (m) Position in polynya Bloom stage‡

No. sample
depth horizons

4.05 71°95029″S 118°47026″W 600 Shelf break pack ice Early bloom 5
5.04 73°96066″S 118°03048″W 1250 Getz Ice Shelf Early bloom 5
12.01 74°20098″S 112°37031″W 700 Dotson Ice Shelf Early bloom 6
18.01 73°00000″S 113°30023″W 435 Marginal ice Mid-bloom 4
25.07 73°12001″S 112°00007″W 406 Marginal ice Mid-bloom 5
29.02 73°35004″S 114°12068″W 738 Open polynya High bloom 5
34.03 72°96035″S 115°75096″W 684 Marginal ice Early bloom 5
35.11 73°27095″S 112°10041″W 420 Marginal ice High bloom 5
48.02 73°70013″S 115°44099″W 997 Open polynya High bloom 5
50.09 73°41061″S 115°25003″W 1050 Open polynya High bloom 5
57.02 73°80017″S 113°1605″W 745 Open polynya High bloom 5
57.11 73°70073″S 113°26053″W 745 Open polynya High bloom 5
57.35 73°60022″S 113°14088″W 745 Open polynya High bloom 5
66.02 72°74009″S 116°01099″W 659 Marginal pack ice Early bloom 4
68.01 71°85068″S 118°27098″W 830 Shelf break pack ice Early bloom 3

† An expanded table containing further details is provided as Appendix S2: Table S1.
‡ Yager et al. (2016).
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Fig. 2. Bacterioplankton community richness and abundance, by depth horizon and station. Richness was esti-
mated from OTUs and standardized via rarefaction using sample number N = 750. (a) Cumulative bacterio-
plankton richness at each station. The lower mCDW depth horizon (collected from just two stations) is excluded
from this panel. (b) Bacterioplankton richness vs. abundance in each sample, with colored symbols indicating
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As with surface waters, bacterial abundance in
H2cmax increased with bloom stage (Appendix
S2: Fig. S2a). Deeper in the water column, abun-
dance also increased with bloom stage, although
the relationship was statistically significant only
at H5Tmax (Appendix S2: Fig. S2a, Table S3).

Beta diversity of bacterioplankton to
corresponding nutrient distribution

In our multivariate analyses, OTU samples
clustered most strongly according to depth
(PCoA1 and NMDS; Fig. 6a, c) with a clear sepa-
ration between the deep horizons H5Tmax and
H6bot from upper horizons H1surf to H3csub. Dis-
tinct clusters appeared between H1surf and
H2cmax clustering together and a separated
H3csub, which correspond to the switch in
response of bacterioplankton community alpha
diversity to chl-a shown in Fig. 5. Some outlier
samples were collected at stations with reduced

influence from the phytoplankton bloom, either
at the Dotson Ice Shelf front (station 12.01) or
beneath the pack ice (station 68.01).
Nutrients clustered as expected according to

depth horizon (see also Yager et al. 2016). Sam-
ples from the three upper horizons exhibited
greater variability but generally lower inorganic
nutrients and higher organic compounds. Sam-
ples from the two bottom horizons showed less
variability but higher inorganic and lower
organic nutrient concentrations. H3csub and
H4Tmin, which both belong to the Winter Water
mass, could be separated by nutrients. The
H3csub was characterized by the highest concen-
tration of dissolved organic carbon [DOC] and
ammonia [NH4

+], with DOC in a range from 0.59
to 1.43 ppm and NH4

+ in a range from 0 to
1.26 lmol/L (Fig. 6c, Appendix S2: Table S5).
Both OTU diversity and nutrients displayed

distinct spatial gradients among samples. Both

Fig. 3. Linear regression between total surface-water (AASW) diversity measures and bloom progression as
measured by the magnitude of the chl-a max concentration. (a) Alpha diversity of OTUs found in AASW, as mea-
sured by Shannon’s H; (b) bacterial abundance in AASW. Dotted lines represent linear regression results with
shaded 95% confidence range.

depth horizon. Richness estimates include 95% confidence intervals calculated during rarefaction; see text for fur-
ther details. (c) Bacterioplankton richness vs. depth horizon. (d) Bacterioplankton abundance vs. depth horizon.
Depth horizons in panels (c) and (d) follow the legend in panel (b). Gray box plots show central tendency and
quartiles. In panels (c) and (d), the horizontal lines connect depth horizons that did not differ in bacterioplankton
richness or abundance, respectively, as determined via pairwise Tukey post hoc tests (P ≤ 0.05); see text for fur-
ther details.

(Fig. 2. Continued)
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types of samples separated broadly by depth as
shown by the first axes of both OTU diversity
and nutrient content in both the beta dispersal
and NMDS analyses (Fig. 6a, c, d, f). A positive
correlation was observed between Bray-Curtis
pairwise distance matrices of sample OTU diver-
sity and sample nutrient content (Mantel test,
r = 0.54, P = 0.001).

Variation in nutrient content among samples,
however, showed a more linear (or monotonic)
relationship with depth than did variation in
OTU diversity. Variations (or lack thereof) in the
bacterioplankton community cannot be explained
solely by the distribution of nutrients. For exam-
ple, the OTU samples in especially H3csub sepa-
rated along a second PCoA or NMDS axis
(Fig. 6a, c), whereas there was much less separa-
tion between the nutrient samples (Fig. 6d, f). In
contrast, the beta diversity along NMDS1 in nutri-
ent content among the H1surf and H2cmax horizons
(Fig. 6f) was markedly greater than the variation
in OTU diversity (Fig. 6c). Nutrient distribution in
the surface waters did not co-vary with bacterio-
plankton diversity, but with bacterial abundance,
depth, and chl-a (Fig. 6f).

DISCUSSION

These results provide some insight into how
phytoplankton blooms within the surface waters

of the ASP structure heterotrophic bacterioplank-
ton communities throughout the water column.
The effects are not confined to the surface waters
in which phytoplankton and bacterioplankton
co-occur, but also continue below the phyto-
plankton biomass, with more diverse bacterio-
plankton communities appearing beneath more
abundant phytoplankton blooms. One mecha-
nism responsible for this effect may be that the
local impact of the phytoplankton cascades
downward as detritus particles from the bloom
sink into mesopelagic bacterioplankton commu-
nities. At greater depths, the cascading effect
diminishes as the particle flux declines with rem-
ineralization. In contrast to other recent studies
(Galand et al. 2010, Agogu�e et al. 2011, Alonso-
S�aez et al. 2011, Hamdan et al. 2013), hydrologic
boundaries (water mass identity) were not the
best explanation for bacterial community compo-
sition. As an example, the lower WWdepth hori-
zon (H4Tmin) contained a bacterioplankton
community more similar to that of the adjacent
and subtending mCDW depth horizon (H5Tmax)
than to that of the adjacent and overlying upper
WWdepth horizon (H3csub; Fig. 6c).

Mechanisms structuring bacterioplankton
communities in surface waters
A distinct subset of bacteria was found in the

surface waters, dissimilar and less diverse than

Fig. 4. Linear regression between pairwise divergence and bloom progression as measured by pairwise mean
station chl-a max. (a) Pairwise comparison of all surface-water samples; (b) pairwise comparison only of samples
taken at H2cmax, the depth of maximum chl-a at each station. Dashed lines represent linear regression results with
shaded 95% confidence range.
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the underlying mesopelagic community. When
local chl-a increased, a decrease in bacterioplank-
ton community diversity occurred (Figs. 3a, 5a)
along with a decrease in site-to-site community
divergence (Fig. 4), all while bacterioplankton
abundance increased (Fig. 3b). These results are
consistent with the findings of Hyun et al.
(2015), who identified a positive correlation
between chl-a concentration and respiration rates
in the open polynya, and with Williams et al.
(2016) who reported high bacterial production
and increasing exoenzyme activity associated
with the bloom. All these patterns may be
explained by increasing competition as chl-a
increases. Bacterioplankton communities in

surface waters are structured by local competi-
tive effects that favor specializations for effective
heterotrophy in the midst of a highly active phy-
toplankton community, favoring fast-growing
copiotrophs that outcompete slow-growing olig-
otrophic bacteria. These results are consistent
with other community structure data from the
region (Delmont et al. 2014, 2015, Kim et al.
2014, Richert et al. 2015, Dinasquet et al. 2017).
These productivity-driven patterns in bacterio-

plankton community diversity and taxonomic
composition in surface waters also agree with the
findings of Horner-Devine et al. (2003, 2004), who
recognized taxon-specific interactions between
productivity and bacterial richness, inferring that
copiotrophs profit from high productivity rates
and resource availability while putative olig-
otrophic and more fastidious microbes decrease in
abundance with increasing chl-a. Direct competi-
tion for nutrients with phytoplankton is likely
another contributing factor, as phytoplankton can
be superior competitors vs. bacterioplankton
under high nutrient availability with the opposite
seen for more nutrient-poor environments (Kirch-
man 1994, Løvdal et al. 2007, 2008).

Cascading effects of chl-a with depth
Bacterioplankton alpha diversity at the H3csub

(base of the high-chlorophyll layer) increases as
chl-a in the overlying surface waters increases
(Fig. 5b), showing that the immediate influence
of the bloom extends well below its occurrence
and that its effect on bacterioplankton commu-
nity diversity is opposite to that seen in the sur-
face waters. Underneath the euphotic zone,
downward flux of diagenetically fresh and labile
organic matter fuels heterotrophs (Jiao et al.
2010) and offers a variety of niches. Within the
ASP, Delmont et al. (2014) differentiated taxa
into characteristic size classes such as particle-
associated bacteria which form biofilms or may
excrete exoenzymes (e.g., Colwellia, Pseudoal-
teromonas, and Cryomorphaceae) and free-living
bacteria that may scavenge small organic degra-
dation by-products (e.g., Piscirickettsiaceae, Pelag-
ibacter, Oceanospirillales). Our results indicate that
broad diversity shifts across photic, carbon, and
nutrient gradients accompany this taxonomic
turnover, and we expect that similar shifts would
occur in similar oceanic systems regardless of the
participating taxa.

Fig. 5. Relationship between bloom progression as
measured by the magnitude of the chl-a max at the
sampling site and the alpha diversity of OTUs, as mea-
sured by Shannon’s H at four depth horizons: (a)
H2cmax, the depth of chl-a max; (b) H3csub, the base of
the high-chlorophyll a layer; (c) H4Tmin, deep Winter
Water; and (d) H5Tmax, mCDW. Dotted lines represent
linear regression results with shaded 95% confidence
range.
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Fig. 6. Multivariate analyses of bacterioplankton community composition and seawater nutrient composition
for 43 samples with both OTU (left column) and nutrient data (right column); see text for further details on sam-
ples and calculation of pairwise dissimilarities. Panels (a) and (d): the first two axes of principal components anal-
ysis (PCoA) with samples grouped by depth horizon (see text for depth horizon definitions). The depth horizon-
specific centroid (calculated as the spatial median) is shown as a solid colored symbol following the legend in
panel (d). Gray lines connect each centroid to sample-specific values for that depth horizon, and dashed lines
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As we descend further into the WW, further
community and nutrient gradient shifts appear.
The lower WW (H4Tmin) hosts a bacterioplankton
community dissimilar to that found in the upper
WW (H3csub), and the shift in bacterioplankton
community composition revealed by NMDS
analysis is pronounced. This is also shown by
our bacterioplankton community beta diversity
results. Winter water and surface water have
similar high beta diversities among samples
(Fig. 6a, b), but this similarity appears to mask
fundamentally different mechanisms producing
this taxonomic turnover. Beta diversity among
surface waters is elevated primarily by lateral
site-to-site differences in community composition
within surface waters and the subtending WW
from which populations in these surface commu-
nities are recruited each year (Fig. 4), while beta
diversity among WW (H3csub and H4Tmin) sam-
ples is also high because of community differ-
ences between samples collected at different
depths along the strong gradient of WW bacteri-
oplankton community composition (Fig. 6a–c).

Most nutrients do not show similarly strong
gradients within WW (H3csub and H4Tmin), with
homogenous nutrient composition among dee-
per samples (Fig. 6f). Silicate, nitrate, and
orthophosphate increased gradually with depth,
indicating growth-related depletion in the
euphotic surface, possibly combined with a
downward flux linked to particle sedimentation
(Appendix S2: Table S5; Pondaven et al. 2000,
Pollard et al. 2006, Paytan and McLaughlin 2007,
Yager et al. 2016). In contrast, the highest ammo-
nia and DOC concentrations appear in H3csub,
where non-migrating macrozooplankton were
most abundant (Wilson et al. 2015), while
depleted to below detection limits in H4Tmin. This
may explain some of the variability in bacterio-
plankton communities of the WW, as ammonia is

the most bioavailable form of nitrogen in these
waters (Zehr and Ward 2002).

Impact of bacterial community structure on
marine carbon sequestration
Mesopelagic bacteria and their organic matter

degrading activities are critically important to the
fate of sinking photosynthetically derived organic
carbon (Azam 1998, Bell et al. 2005). The compo-
sition and capabilities of the bacterioplankton
community in the mesopelagic WW of the ASP
may directly influence the carbon sequestration
potential of the phytoplankton bloom occurring
in the overlying surface waters (e.g., Mu et al.
2014, Yager et al. 2016). On the basis of these
results, it may be inferred that the major nutrient
gradient underlying the cascading effects is a
change in the quality of particulate organic matter
(POM) and dissolved organic matter (DOM) in a
continuum with depth from labile to recalcitrant
as they cascade downward, and that this explains
the shift in bacterioplankton communities from
below surface water into the underlying mesope-
lagic deeper waters. Below the zone of recycling,
gradual degradation of POM and DOM transits
downward and causes an increased recalcitrance
of POM and DOM that is accordingly more likely
to undergo long-term storage than microbial recy-
cling. Deeper water masses are known to receive
such high C:N and C:P recalcitrant organic car-
bon (RDOM) formed by microbial modification
of labile phytoplankton-derived DOM sources
(Jiao et al. 2010).
This sinking phytodetritus provides a source

of substrate for organisms at depth, and the
cycles arising from this process have been collec-
tively termed the biological carbon pump (Duck-
low et al. 2001). One general trend in ocean
carbon pump efficiency is that high-latitude
regions have higher export efficiency (lower

delineate the convex hull surrounding the samples for each depth horizon. Panels (b) and (e): depth horizon-spe-
cific distances of samples from the centroid in panels (a) and (d), respectively, as a measure of beta diversity of
OTUs and nutrient values within each depth horizon. Solid horizontal lines connect depth horizons that did not
differ in beta dispersion, as determined via pairwise Tukey post hoc tests (P ≤ 0.05); see text for further details.
In panel (e), the dashed line segment indicates that H2cmax differed from H5Tmax, but H1surf did not. Panels (c)
and (f): the first two axes of non-metric multidimensional scaling (NMDS) ordination with samples grouped by
depth horizon. Overlying the OTU and nutrient ordinations are corresponding gradients of nutrient composition
(panel c) and phytoplankton biomass, bacterioplankton abundance, and sample depth (panels c and f).

(Fig. 6. Continued)
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carbon recycling) than low-latitude regions
(Ducklow et al. 2001). Nevertheless, the highly
responsive and diverse mesopelagic microbial
community we observed is consistent with mea-
surements in Antarctic polynyas showing that
most phytodetrital carbon produced during
bloom events, representing ~85% of the yearly
primary productivity, is recycled within the
upper 350 m of the water column (Fischer et al.
1988, Ducklow et al. 2008, 2015).

CONCLUSION

The massive, recurring phytoplankton bloom in
the Amundsen Sea Polynya clearly impacts both
the epipelagic and the mesopelagic bacterial com-
munity in this key region of the Southern Ocean.
The increasing homogeneity of bacterial commu-
nities as the algal bloom progresses appears to
favor opportunistic heterotrophic taxa, leading to
a less diverse bacterial community in the surface
waters. In contrast, the bacterial communities in
the mesopelagic waters just beneath the bloom
become increasingly diverse as the phytoplankton
build up and then sink into the subsurface. This
sinking phytodetritus provides food for zooplank-
ton and substrate for particle-associated bacteria,
which in turn increase the number of biogeochem-
ical niches available at these depths. As the parti-
cle remnants sink deeper, their impact on niche
availability and bacterial diversity declines, with
an increased recalcitrance of POM and DOM that
is accordingly more likely to undergo long-term
storage than microbial recycling.

As part of ASPIRE, this study provides addi-
tional insight to an ecosystem which is undergo-
ing massive changes due to a changing climate.
The novelty presented here is the mechanistic
view on phytoplankton and bacterioplankton
interaction in a polar environment characterized
by strong seasonal re-occurring bloom events.
Bacterioplankton as decomposers represent the
major link between marine primary production
from atmospheric carbon and its sequestration
into the interior of the ocean.
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