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Abstract 

Dissolved organic matter (DOM) in marine waters is a complex mixture of 

compounds and elements that contribute substantially to the global carbon cycle. The 

large reservoir of dissolved organic carbon (DOC) represents a vital resource for 

heterotrophic bacteria. Bacteria can utilise, produce, recycle and transform 

components of the DOM pool, and the physicochemical characteristics of this pool 

can directly influence bacterial activity; with consequences for nutrient cycling and 

primary productivity. In the present study we explored bacterial transformation of 

naturally occurring DOM across an extensive brackish water gradient in the Baltic 

Sea. Highest DOC utilisation (indicated by decreased DOC concentration) was 

recorded in the more saline southerly region where waters are characterised by more 

autochthonous DOM. These sites expressed the lowest bacterial growth efficiency 

(BGE), whereas in northerly regions, characterised by higher terrestrial and 

allochthonous DOM, the DOC utilisation was low and BGE was highest. Bacterial 

processing of the DOM pool in the south resulted in larger molecular weight 

compounds and compounds associated with secondary terrestrial humic matter being 

degraded, and a processed DOM pool that was more aromatic in nature and 

contributed more strongly to water colour; while the opposite was true in the north. 

Nutrient concentration and stoichiometry and DOM characteristics affected bacterial 

sctivity, including metabolic status (BGE), which influenced DOM transformations. 

Our study highlights dramatic differences in DOM characteristics and microbial 

carbon cycling in sub-basins of the Baltic Sea. These findings are critical for our 

understanding of carbon and nutrient biogeochemistry, particularly in light of climate 

change scenarios. 
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Highlights 

 Clear spatial differences were seen in DOM characteristics and bacterial response. 

 Bacterial growth and metabolic status have a dual role influencing the DOM pool. 

 Physicochemical and biological processes interact, influencing the carbon cycle.  
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1. Introduction 

The dissolved organic matter (DOM) pool is a complex mixture of molecules of 

disparate structure and of diverse origin. The DOM pool incorporates various forms 

of elements that are vital for microbial growth, such as: carbon (C), nitrogen (N) and 

phosphorus (P). In marine ecosystems the DOM pool, particularly the dissolved 

organic carbon (DOC) fraction, represents an important resource for heterotrophic 

bacteria (Ducklow et al., 1986; Sherr and Sherr, 1988). Bacteria are in turn 

fundamental for the recycling of key nutrients (Hansell and Carlson, 2002).  

 

DOM in marine waters is in copious supply (Hedges, 1992; Benner and Amon, 2015). 

While DOM in open water marine systems is dominantly derived from autochthonous 

processes (i.e. phytoplankton primary production and related processes: Nagata, 

2000), allochthonous terrestrial organic matter can also be an important contributor to 

the DOM pool. This latter scenario can be especially pertinent in enclosed or coastal 

waters (Ask et al., 2009; Deutsch et al., 2012; Fleming-Lehtinen et al., 2015). The 

characteristics of the DOM pool are influenced by its origin (e.g. autochthonous, 

allochthonous, land use, catchment composition) and these attributes in turn control 

its bioavailability and fate. These factors influence its potential importance in the 

ecosystem (Asmala et al., 2013; Boyd and Osburn, 2004; Stedmon et al., 2003). The 

concentration and properties of the DOM pool can directly influence heterotrophic 

processes at the base of the food web. Supplementary DOC and allochthonous 

nutrients may enable bacteria to outcompete autotrophic primary producers (Fandino 

et al., 2001; Lignell et al., 2008; Sandberg et al., 2004; Smith et al., 1995). 

Furthermore, DOM can catalyse other concurrent changes, such as controlling the 

penetration of UV and visible solar radiation in the surface ocean (Dupont and 
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Aksnes, 2013; Nelson and Siegel, 2013). Thus, any modification of the DOM pool 

may result in changes in the balance of basal production (heterotrophic bacterial and 

autotrophic algal production) or changes in food web structure. The outcome of such 

changes have the potential to influence ecosystem function (Azam et al., 1983; Azam, 

1998; Sandberg et al., 2004; Hansson et al., 2013; Lefébure et al., 2013) and the 

global carbon cycle (Jiao et al., 2010).  

 

Since only a limited portion of the DOC pool is available to bacteria (Hoikkala et al., 

2015; Søndergaard and Middelboe, 1995) carbon limitation of bacterioplankton 

growth is common (e.g. Carlson and Ducklow 1996; Kirchman and Rich, 1997). To 

understand the fate of DOM in marine systems it is therefore important to combine 

bacterial utilisation studies with detailed characterisation of the prevailing DOM pool. 

By examining DOM absorbance and fluorescence properties it is possible to gain or 

infer some important quantitative (e.g. concentrations of chromophoric dissolved 

organic matter (CDOM) or humic substances) and qualitative insights, such as: 

estimates of molecular weight (Amon and Benner, 1996; Asmala et al., 2013; Wallin 

et al., 2015), aromaticity (Weishaar et al., 2003), and DOM origin (e.g. terrestrial, 

marine produced or catchment land use). Characteristics of the DOM pool have been 

linked to DOC concentration, the potential bioavailability of the DOM, bacterial 

growth efficiency (BGE), and biological breakdown and production processes 

(Asmala et al., 2013; Benner and Amon, 2015; Fichot and Benner, 2012; Trabelsi and 

Rassoulzadegan, 2011). Consequently, knowledge about the characteristics of the 

DOM pool, its bioavailability and the efficiency of bacterial utilisation (Asmala et al., 

2013; Dinasquet et al., 2013; Figueroa et al., 2016) is critical for understanding 

ecosystem function (Sandberg et al., 2004) and carbon cycling (Bianchi et al., 2013; 
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Jiao et al., 2010). Obtaining such insights appears especially pertinent when 

considering climate change predictions (Andersson et al., 2015; Jiao et al., 2010), 

particularly those for enclosed water bodies such as the Baltic Sea (Andersson et al., 

2015). 

 

In this study we examined the bioavailability of DOC in open-sea waters of the three 

major basins of the Baltic Sea, and assessed the bacterial-DOM interactions ongoing. 

Environmental sampling was combined with DOC utilisation experiments at four 

stations in each basin. We explored the influence of DOC concentration and optical 

DOM characteristics on bacterial growth and DOC utilisation. We aimed to determine 

if: 1) spatial differences in DOC concentration and DOM characteristics occurred 

along this latitudinal gradient, 2) differences in DOM influenced the efficiency with 

which DOC was utilised, 3) nutrient limitation resulted in decreased DOC utilisation, 

and 4) altered DOC utilisation has potential consequences for the Baltic Sea carbon 

cycle. We discuss our findings in the context of wider ecosystem function, global 

elemental cycles and climate change. 

 

2. Materials and Methods  

 

2.1. Study system and rationale. The Baltic Sea is a semi-enclosed sea that is 

strongly influenced by an extensive catchment area. DOC concentrations in Baltic Sea 

open waters do not differ strongly between the three major basins (Hoikkala et al., 

2015; Ripszam et al., 2015). However, the northern basins are highly influenced by 

river discharges of DOC-rich waters (Stepanauskas et al., 2002, Hoikkala et al., 2015, 

Fleming-Lehtinen et al., 2015; Reader et al., 2014; Räike et al., 2012), and the salinity 
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and N and P concentrations generally increase in a southerly direction (Andersson et 

al., 2015; Hoikkala et al., 2015). These factors are strong drivers of the ecological 

gradients that occur in the Baltic Sea. 

 

2.2. Sampling and water collection (in-situ). Sampling was carried out in July 2011 

at four stations in each of the three major basins of the Baltic Sea (Fig. 1). Two trips 

were made, one in the Baltic Proper (July 5th) and one in the Gulf of Bothnia 

(Bothnian Sea and Bothnian Bay, July 19th - 21st). Water was collected from a depth 

of 2 m using Niskin bottles and salinity, temperature, pH, total nitrogen (TN), total 

phosphorus (TP) and dissolved organic carbon (DOC) were measured, as described 

below. 
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Figure. 1. Map of the Baltic Sea showing sampling locations of the four open sea 

stations sampled in each of the three major basins (Baltic Proper, Bothnian Sea and 

Bothnian Bay). 

 

2.3. Preparation of experimental study. To remove larger organisms 10 L of water 

was passed through a 0.45 µm capsule filter (Millipak-40. Millipore) using gravity 

filtration. The filter capsule was rinsed with ~1 L of sample water prior to use, and 

0.45 µm filtrate was used to rinse the recipient acid-washed plastic carboy. The final 6 

L of water passing through the 0.45 µm filter was collected, from here onwards 

referred to as ‘filtrate 1’. Circa 2 L of water was also gravity filtered through a pre-

combusted 47 mm GF/F filter, referred to as ‘filtrate 2’. This process was repeated for 

each station using a fresh filter capsule and fresh acid washed containers on each 
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occasion, and the process was completed within ~4 hours. Filtration through a 

combusted GF/F filter has been shown to decrease bacterial numbers (Nayar and 

Chou, 2003) and this was observed in this study. For example bacterial numbers in 

microcosm start waters (a combination of filtrate 1 and 2) were 52 % (SD 7, n = 4) 

lower than the in situ waters of the Baltic Proper samples (not tested in other basins). 

It is possible that the filtration procedure removed larger members of the bacterial 

community, possibly altering the natural size distribution at the start of the 

experiment. 

 

2.4. Microcosm setup and sampling. At each station six 1 L polycarbonate bottles 

(microcosm units) were filled with a combination of 900 mL of filtrate 1 and 100 mL 

of filtrate 2. Filtrate 1 and 2 waters were only combined for their respective stations. 

A filter-sterilised solution consisting of nitrate, ammonia and phosphate (additions of 

20 µM N and 3 µM P, in MilliQ water) was added to three of the microcosm units per 

station (+NP treatment) to preclude N or P limitation (as used similarly in Degerman 

et al., 2013). In standard microcosm units 200 µL of filter sterile MilliQ water was 

added, a volume corresponding to the solution of nutrients added above. Microcosm 

units were run in triplicate for each station, making six microcosms per station (three 

standard and three +NP treatment), twenty-four microcosms per basin and a total of 

seventy-two microcosms units. Acid washed and sterile equipment was used for all 

filtration, storage, preparation, incubation and sampling stages. 

 

Preparation of microcosms was completed within ~6 hours of initial water collection. 

All experimental units were immediately incubated in the dark and maintained at 15 

°C (Gulf of Bothnia) or 18 °C (Baltic Proper, Table 1). Experimental units were 
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sampled on day 0, 1, 3, 5 and 10 of incubation (removing circa 50 ml on each 

occasion). The Day 0 sample, taken from initial bulk combinations of filtrate 1 and 

filtrate 2 waters (i.e. mixture prior to addition to individual microcosm units), was a 

single sample per station and used to represent the starting values for all treatments 

(i.e. both standard and +NP treatments). Start and end concentrations of TN and TP 

were measured using a Bran & Luebbe TRAACS 800 autoanalyser according to 

Grasshoff et al. (1983), following the process described in Traving et al., (2017). Due 

to the nature of the field sampling during which the experiment was carried out, it was 

not possible to monitor inorganic and organic nutrient concentrations. Start C (DOC), 

N (TN) and P (TP) stoichiometric ratios were calculated. 
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Table 1. Mean values (standard deviation) of in-situ physicochemical variables (n = 4 

independent stations per basin). Nutrient stoichiometry values represent waters from 

standard microcosm at the start of the experiment, expressed as basin mean values (n 

= 12). 
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Baltic 

Proper  

17.6  

(0.2) 

8.5  

(0.1) 

6.8 

(0.1) 

708 

(58) 

0.21 

(0.04) 

16.55 

(0.91) 

31.6 

(4.9) 

16.6 

(3.0) 

527.0 

(144.2) 

Bothnian 

Sea  

14.4 

(0.2) 

8.3 

(0.1) 

5.2 

(0.1) 

466 

(42) 

0.18 

(0.03) 

16.16 

(1.14) 

21.3 

(3.1) 

18.9 

(2.7) 

402.6 

(78.5) 

Bothnian 

Bay  

15.5 

(0.1) 

8.1 

(0.1) 

2.8 

(0.1) 

416 

(42) 

0.08 

(0.01) 

13.28 

(0.61) 

23.1 

(1.4) 

33.8 

(6.5) 

780.7 

(157.0) 

 

The following variables were measured on every sampling day and in every 

experimental microcosm unit.  

 

2.5. Bacterial abundance and production. Bacterial abundance (BA) samples (1.5 

mL) were taken in duplicate 2 mL cryovials, fixed with 0.2 µm filtered glutaraldehyde 

(1% final concentration) and flash frozen in liquid nitrogen prior to storage at -80 °C. 

Samples were stained with SybrGreen (Invitrogen) and cells were counted on a 

FACSCantoII flow cytometer (BD Biosciences), as previously described (Gasol and 

del Giorgio, 2000). Fluorescent beads (True count beads, Becton Dickinson) were 

used to calibrate the flow rate. Bacterial production (BP) was measured by [3H]-
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thymidine incorporation (Fuhrman & Azam 1982), as modified for 

microcentrifugation (Smith and Azam 1992). Triplicate 1.7 ml aliquots were 

incubated for 1 hour with [methyl-3H]-thymidine in sterile 2.0 ml capacity 

polypropylene tubes at in situ temperature. Saturation curves were used to determine 

suitable thymidine concentrations in the Baltic Proper and Gulf of Bothnia regions 

separately (20 and 24 nM final concentration, respectively, and a specific activity of 

73.4 Ci mmol-1) and analysed with a Beckman 6500 scintillation counter. A single 

sample per microcosm, killed by adding 5% trichloracetic acid prior to the addition of 

thymidine, served as a blank. Thymidine incorporation was converted to cell 

production using 1.4 x 1018 cells mole-1 (Wikner and Hagström 1999) and 20.4 fg C 

cell-1 (Lee and Fuhrman, 1987) to estimate carbon biomass production. 

 

2.6. DOC concentration and DOM characteristics. Duplicate 12 mL samples were 

filtered through pre-combusted GF/F filters into 15 ml acid washed polypropylene 

tubes, acidified with 120 µL of 2 M HCl, and stored at 4°C until analysis. DOC 

samples were analysed using high temperature catalytic oxidation (Shimadzu TOC-

5000), as detailed in Traving et al., (2017). DOM fluorescence samples were prepared 

by collecting a single 40 mL sample that was filtered at low pressure through a pre-

combusted GF/F filter into a 50 mL tube and immediately frozen (-20°C) until 

processing. It should be noted that freezing is not optimal as it may alter DOM 

fluorescence (e.g. Fellman et al., 2008), potentially in a random manner (Spencer et 

al., 2007). However the extensive gradient studied and field sampling carried out gave 

no viable alternative. Since all samples in the present study were treated identically 

we infer that the observed trends are valid for the direct comparisons carried out. 

Nevertheless, comparisons of specific values between this and other studies should be 
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done with caution. Samples were acclimated to room temperature on a Horiba 

Aqualog spectrofluorometer (Horiba Scientific) in a 1 cm quartz cuvette. This 

instrument simultaneously measures absorption (from 240 nm to 600 nm) and 

fluorescence (at excitation and emission wavelengths 240 nm to 600 nm) at 3 nm 

intervals. Correction, calibration and calculation of informative variables were carried 

out (Asmala et al., 2013; Murphy et al., 2010; Stedmon et al., 2000). The following 

variables were extracted or calculated: 1. the ratio between aCDOM(254) and aCDOM(365) 

(referred to as: a254:a365), 2. a slope of the spectra for wavelengths 275-295 nm 

(slope coefficient, S275-295); both indicators of DOM molecular weight (Asmala et 

al., 2013; Fichot and Benner, 2012; Helms et al., 2008; Wallin et al., 2015), 3. 

absorbance at 440 nm (aCDOM(440)), referred to as chromophoric dissolved organic 

matter (CDOM) and indicative of water colour (Harvey et al., 2015), 4. SUVA254, 

indicative of DOM aromaticity (Ripszam et al., 2015; Weishaar et al., 2003), 5. 

fluorescence peak C (peak C, Ex/Em of 350/420-480 nm), a secondary humic peaks 

associated with terrestrial origin (Cammack et al., 2004; Coble, 1996; Stedmon and 

Markager, 2005), 6. fluorescence peaks B (peak B, Ex/Em of 275/310 nm) and T 

(peak T, Ex/Em of 275/340 nm), protein-like peaks of similar structural composition 

to tyrosine and tryptophan, respectively (Coble, 1996), 7. fluorescence peaks A (peak 

A, Ex/Em of 260/380-460 nm) and M (peak M, Ex/Em of 312/380-420 nm), primary 

dissolved humic substances and marine humic associated compounds, respectively 

(Coble, 1996), and 8. the fluorescent peaks summed together as total humic-like or 

total amino-like peaks. 

 

2.7. DOC utilisation, BGE and fluctuation of variables. Calculations of change 

(increase or decrease, ∆) were carried out between days 0 and 5 (∆0-5) and between 
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days 0 and 10 (∆0-10), the latter being the full length of microcosm incubations. Trends 

were generally similar for both incubation time periods examined. However, only data 

for ∆0-5 are presented as this represented the more active period of the incubation (see 

results). Variables for which ∆ data are calculated include: BA, DOC, a254:a365, 

S275-295, SUVA254, peak B, peak C, and peak T. Lastly, ∆DOC (or DOC utilisation) 

was calculated between days 1 and 5 due to missing DOC data at some stations on 

day 0. Where DOC data was present on day 0 there was no marked decrease in DOC 

between days 0 and 1. Other calculations reliant on ∆DOC (e.g. BGE) were also 

calculated using requisite data from the corresponding time period. BGE (%) was 

calculated as the integrated cumulative bacterial production during days 1-5 (BPcum1-5) 

divided by the ∆DOC between days 1 and 5 (∆DOC1-5), multiplied by 100 (Figueroa 

et al., 2016). 

 

2.8. Statistical analyses.  A Kendall-Tau correlation analysis was carried out on in-

situ physicochemical data. A Principal component analysis (PCA) was performed to 

examine the similarity and separation of stations within and between the three 

different basins. No pre-processing of the data was undertaken. A one-way analysis of 

variance (ANOVA) with Tukey’s HSD (honest significant differences) post hoc 

analysis was also carried out on in-situ data. 

 

Cumulative bacterial production, BGE and ∆ data were analysed with a two-way 

ANOVA to examine the effects of basin and treatment (+/- NP), and any interaction 

between these. 
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A Kendall-Tau correlation analysis was performed on the raw data from the 

experimental microcosms. All variables measured, on all sampling days, in all 

treatments, and from all stations were included. Missing data values (3.5% of all data 

values) were imputed as means of replicates. A repeated measures-multivariate 

analysis of variance (RM-MANOVA) was performed to examine significant changes 

over the duration of the experiment and the influence of treatment and basin. Data 

used in the RM-MANOVA analysis did not conform to normality and did not 

improve with transformation, however these methods have been shown to be resilient 

to violations in normality (Finch, 2005) and have been successfully applied elsewhere 

(e.g. Ferrari et al., 2014). A PCA analysis was carried out on the above variables from 

standard microcosm data only (i.e. +NP microcosms excluded). 

 

To explore drivers of specific changes or trends recorded, correlations were carried 

out between a selected experimental variables, cumulative data (e.g. cumulative BP), 

nutrient stoichiometric ratios (e.g. C:N or C:P), and ∆ data (e.g. BA or BGE). Some 

data were normalised (0-1 scale) and others were transformed (ln). In all cases where 

such transformations were applied it is defined where the results are presented.  

 

Statistical analyses and figure production were mainly performed in R Core Team 

(2013) using the packages: Rcmdr, prcomp, ggplot2, maps, mapdata and ggbiplot. 

The RM-MANOVA was performed in SPSS (IBM SPSS Statistics software version 

22.0.0.0). 
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3. Results 

3.1. Station similarity and basin differentiation. In-situ physicochemical variables 

indicated lower nutrient concentrations (TN and TP), salinity, pH and DOC in the 

northerly reaches of the Baltic Sea (the Bothnian Bay), as compared to more southerly 

stations (Table 1). Surface water temperature was also lower in the Gulf of Bothnia as 

compared to the Baltic Proper. However, during our specific sampling program 

temperature was higher in the Bothnian Bay, than the Bothnian Sea. Strong and 

significant (p <0.0001) correlations were found between salinity and TP (r = 0.7404), 

salinity and pH (r = 0.8722), TN and TP (r = 0.7176), and TP and pH (r = 0.7837). 

The stations within each basin clustered together closely in the PCA analysis, and 

clear separation between the three basins was observed (Fig. S1). The global ANOVA 

indicated significant differences between the three basins for most in-situ 

physicochemical variables measured (Table S1). Stations are thus considered as 

replicates within each basin during analysis of the microcosm study. 

 

3.1.1. Initial conditions. Clear variation in optical DOM characteristic variables were 

observed between basins at the start of the microcosm incubation. The a254:a365 

ratio was higher in the Baltic Proper and decreased in a northerly direction. SUVA254 

and CDOM showed the opposite trend, being highest in the Bothnian Bay (Fig. S2). 

Values for peak B, peak C, and peak T were generally higher in the Bothnian Bay or 

similar across all basins at the start of the incubations (Fig. S3).  

 

 

3.2. DOC utilisation, bacterial abundance and bacterial production. DOC was 

utilised and decreased particularly between days 1 and 5 of the incubation. Mean 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

decreases in DOC were 233 µmol L-1, 58 µmol L-1and 17 µmol L-1 (by day 5) in the 

Baltic Proper, Bothnian Sea and Bothnian Bay microcosms, respectively (Fig. 2). 

 

Initial BA and BP rates were similar in all microcosms, however the trends during 

incubation differed with basin (Fig. 2). These spatial differences (basin effects) were 

significant for most variables, including over the course of the incubation period 

(Table 2). BP and BA generally peaked during days 1-5 of the incubation period, 

although the correlation between the two measured variables was generally poor. The 

highest BA values were recorded in the Baltic Proper microcosms whereas the highest 

rates of BP occurred in Bothnian Sea microcosms (Fig. 2). Between days 5 and 10, 

BP rates (and BA) generally decreased or plateaued. The initial period of high BA and 

BP rates (days 0-5) corresponded with the phase during which DOC decreased. Lower 

rates of BP by day 10 coincided with a general increase in DOC at this stage (Fig. 2).  
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Figure 2. Temporal trends in mean values for bacterial abundance (BA), bacterial 

production (BP) and dissolved organic carbon (DOC) in microcosm experiments. 

Data are presented by basin (Baltic Proper, triangles; Bothnian Sea, circles; and 

Bothnian Bay, squares), with standard (filled symbols) and +NP treatments (open 

symbols) shown. Standard deviation is indicated by error bars where n = 12. Note 

axis scales are not identical and vary between basins for a single variable. 
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Table 2. Between and within subject contrasts from RM-MANOVA carried out on 

microcosm experiment. Statistically significant (p <0.05) are indicated by bold text. 
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3.2.1. BGE and relative DOC utilisation. Since BP rates and BA were generally 

highest during the first five days of microcosm incubation (and declined between days 

5-10) we present BGE for this active part of the experiment (i.e. till day 5). Relative 

DOC utilisation was highest in the Baltic Proper (~30 % utilised by day 5) and 

decreased in a northerly direction, ~15 % utilisation in the Bothnian Sea and <5 % 

utilisation in the Bothnian Bay (Table 3). Conversely, BGE showed a clear increase in 

a northerly direction with values of ~1.5, 16 and 26 % for the Baltic Proper, Bothnian 

Sea and Bothnian Bay, respectively (Table 3). 

 

Table 3. Mean relative change (∆, %) during the active phase of incubation (standard 

error). DOC utilisation (∆DOC), cumulative bacterial production (BPcum, µg C L-1) 

and bacterial growth efficiency (BGE) between days 1 and 5. For all values n = 7-12.  

Basin Baltic Proper (BP) Bothnian Sea Bothnian Bay 

Treatment -NP +NP -NP +NP -NP +NP 

BGE1-5 1.4 

(0.4) 

1.6 

(0.4) 

16.9 

(6.6) 

16.0 

(4.1) 

20.8 

(6.7) 

30.8 

(4.2) 

BPcum 1-5 25.4 

(2.4) 

32.7 

(2.4) 

97.5 

(2.7) 

109.9 

(17.1) 

27.1 

(1.8) 

49.2 

(1.1) 

∆BA0-5 118.4 

(19.9) 

444.1 

(20.6) 

150.6 

(13.2) 

177.5 

(16.6) 

18.3 

(6.7) 

88.6 

(11.0) 

∆DOC1-5 -27.6 

(3.9) 

-33.1 

(2.3) 

-10.7 

(3.9) 

-14.2 

(2.1) 

-3.9 

(1.2) 

-3.8 

(0.5) 

∆a254:a3650-5 8.1 

(14.8) 

12.5 

(15.5) 

-2.1 

(2.1) 

-2.7 

(2.1) 

-6.9 

(3.6) 

-4.1 

(4.3) 

∆S275:2950-5 4.2 4.6 -5.5 -5.5 -4.3 -4.2 
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 (2.9) (3.0) (0.6) (0.6) (1.6) (2.0) 

∆SUVA0-5 44.1 

(3.8) 

53.9 

(3.9) 

2.4 

(1.0) 

3.8 

(2.1) 

-1.7 

(2.4) 

-2.9 

(2.7) 

∆peak B0-5 1.2 

(1.7) 

8.2 

(2.0) 

25.3 

(10.2) 

11.3 

(7.6) 

-4.2 

(8.7) 

-7.7 

(9.7) 

∆peak C0-5 -4.2 

(0.9) 

-2.0 

(0.8) 

8.0 

(1.1) 

8.1 

(1.3) 

11.39 

(0.8) 

10.0 

(0.6) 

∆peak T0-5 -7.0 

(1.6) 

8.8 

(1.0) 

1.6 

(6.7) 

-2.7 

(5.9) 

-16.4 

(6.5) 

-16.3 

(7.1) 

 

3.3 Changes in TN and TP 

As expected, TN and TP concentrations were elevated in the +NP treatment. 

However, over the duration of the experiment no marked changes in microcosm TN 

and TP concentrations were observed in either the standard or +NP treatments (Table 

S2). 

 

3.3.1. Effect of nutrient addition, +NP. In general nutrient addition increased BA 

and BP rate in the Baltic Proper and Bothnian Bay microcosms, as compared to their 

respective standard microcosms. However, this effect was only seen in the latter 

stages of the overall incubation period (Fig. 2), increasing the respective integrated 

cumulative BP (BPcum) value (Table 3). No such effect was seen in the Bothnian Sea 

microcosms (Fig. 2 and Table 3). Nutrient addition slightly increased the mean 

percentage of DOC utilised (~3-5 %) in more southerly basins, although no effect on 

DOC utilisation was seen in the Bothnian Bay microcosms (Table 3). Only in the 

Bothnian Bay did changes due to nutrient addition translate into increased mean BGE 
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(Table 3). Addition of nutrients had little impact on the optical DOM characteristic 

variables measured (Table 3). With the exception of changes in BA and BP, changes 

due to the addition of nutrients were not significant (Table 2). 

 

3.4 Trends and associations during incubation. Certain variables in the raw data 

were strongly and significantly correlated and therefore removed from the RM-

ANOVA analysis to prevent biasing the result. The variables retained include: BP, 

BA, DOC, a254:a365, SUVA254, peak B, peak C, and peak T. With the exception of 

SUVA254-DOC (r = -0.68) and SUVA254-a254:a365 (r = -0.61), correlations between 

the retained variables was relatively low (r = < +/-0.55). 

 

During incubation the response of DOM characteristics differed between basins. The 

Bothnian Bay exhibited relatively higher levels of peak C than the other two basins at 

the start and while it remained relatively constant in the Baltic Proper incubations it 

increased markedly during the active phase of incubation (up to day 5) in the 

Bothnian Sea and the Bothnian Bay microcosms (Fig. S3). Fluorescence peaks B and 

T fluctuated during the incubation period but clear trends were not present (Fig. S3). 

The a254:a365 ratio and S275-295 were highest in the southern basin and lowest in 

the northern most basin with a minor increase recorded during incubations from the 

Baltic Proper and a minor decrease observed during incubation in the northern basin 

incubations (Fig. S2). SUVA254 values increased during the active phase of the 

microcosm incubation in the Baltic Proper, however decreased during this phase in 

the more northerly basins. A similar trend was observed with CDOM, except for the 

Bothnian Sea microcosms in which it fluctuated and appeared to increase, rather than 
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decrease, during the same phase (Fig. S2). Changes over time in the incubations were 

significant for the majority of variables (Table 2). 

 

S275-295 correlated spatially with CDOM, with higher CDOM values corresponding 

to lower S275-295 values. The same trend was seen during the microcosm experiment 

within each individual basin, suggesting that changes in CDOM during incubation 

also correlated with changes in S275-295 (n = 54-60; R2 = 0.64, 0.66 and 0.74 for 

Baltic Proper, Bothnian Sea and Bothnian Bay, respectively). A similar spatial 

correlation was seen between lnDOC concentration and lnSUVA254 values (ALL, n = 

131, R2 = 0.79, p = <0.001), however, the correlation only remained substantial in the 

Baltic Proper when exploring this trend for microcosm units in each separate basin (n 

= 47-51; R2 = 0.68, 0.39 and 0.22 for Baltic Proper, Bothnian Sea and Bothnian Bay, 

respectively). 

 

3.4.1. Relative changes (relative ∆ values, %, till day 5) in measured variables. 

During the active part of the experiment (i.e. till day 5), relative increases in 

SUVA254, S275-295 and a254:a365 were recorded in the Baltic Proper microcosms. 

Marginal relative increases or relative decreases were recorded in the Bothnian Sea 

microcosms, and relative decreases in the Bothnian Bay microcosms (Table 3). 

Relative decreases in peak B and peak T were strongest in the Bothnian Bay 

microcosms, while a relative increase in peak C was detected in the Bothnian Bay and 

Bothnian Sea compared to a relative decreased in the Baltic Proper (Table 3). 

Changes (∆ %) were generally significantly different between basins (Table S3). 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

3.4.2. Significance and interaction (time-basin-treatment). The RM-MANOVA 

indicated that basin, treatment and time all contributed to significant differences in the 

experimental microcosms (Time*Basin*Treatment: F64,72 = 4.678, p = <0.001). 

However, the effects of time, basin and time*basin exhibited higher F values and 

were more significant than any treatment effects (i.e. addition of nutrients, +NP). 

Treatment effects (and interactions) were generally only significant for BA (Table 2), 

indicating that time (i.e. changes during microcosm incubation) and basin (i.e. origin 

of water used in experimental microcosms) were stronger drivers of the significant 

differences seen. Mean differences of individual variables between basins and their 

significance (post hoc Bonferroni tests) are shown in Table S4. 

 

3.4.3. Associations between measured variables. Since the addition of nutrients had 

a limited effect, the following data only encompass the standard microcosm 

incubations (without nutrient addition). Other correlations are shown in 

supplementary results. 

 

Higher starting DOC concentrations correlated with higher ∆DOC values (DOC 

utilisation) during the active phase of the microcosm incubation (DOC v ∆DOC1-5, n 

= 28, R2 = 0.91, p = <0.001) and with lower BGE (BGE1-5 v DOC, n = 23, R2 = 0.79, p 

= <0.001). However, high DOC utilization correlated with low BGE (BGE1-5 v 

∆DOC1-5, n = 52, R2 = 0.78, p = <0.001). 

 

Nutrient concentrations and nutrient stoichiometry at the start of the incubations 

varied between basins (Table 1). Higher starting concentrations of TN and TP 

corresponded with larger increases in BA during the active incubation period (TN v 
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∆BA0-5, n = 33, R2 = 0.65, p = <0.001 and TP v ∆BA0-5, n = 33, R2 = 0.64, p = 

<0.001). Lower starting C:N ratios had a positive effect on BGE (lnC:N v lnBGE1-5, n 

= 23, R2 = 0.71, p = <0.001), with the highest BGE recorded at C:N ratios of ~23. 

However, at higher C:N ratios DOC utilisation was larger (C:N v ∆DOC0-5, n = 28, R2 

= 0.76, p = <0.001). 

 

Microcosm units exhibiting low BGE values exhibited larger relative increases in 

SUVA254 (lnBGE1-5 v ln normalised % ∆SUVA0-5, n = 23, R2 = 0.47, p = <0.001), 

while those exhibiting higher BGE showed smaller increases in SUVA254 or even 

decreases. The opposite trend was observed for peak C, with relative decreases in 

peak C at lower BGE values (lnBGE1-5 v ln normalised % ∆peak C0-5, n = 23, R2 = 

0.63, p = <0.001). Furthermore, with higher starting DOC concentrations the 

production of peak C was lesser, and at the higher end of DOC concentrations peak C 

decreased (DOC v ∆peak C0-5, n = 36, R2 = 0.66, p = <0.001).  

 

The PCA analysis indicated clear clustering of samples from each basin, and clear 

separation between samples from each basin (Fig. 3). Moreover, there was a clear 

difference in the association of the measured variables to the different basins. 
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Figure 3. Principal component analysis (PCA) of bacterial and DOM characteristic 

variables from all standard (+NP excluded) microcosm units and all sampling 

occasions (Baltic Proper, triangles; Bothnian Sea, circles; and Bothnian Bay, squares). 

PC1 and PC2 encompass 64.5 % of the cumulative variance in the data set. PC1 (46 

% of variance) was most strongly loaded by SUVA254 (+0.46), CDOM (0.42), peak C 

(0.40), a254:a365 (-0.39) and DOC (-0.36). PC2 (18 % of variance) was most strongly 

loaded by peak T (0.53), peak B (0.51), BP (0.45) and BA (0.42). 
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4. Discussion 

Seawater contains a vast pool of carbon and the concentrations, characteristics, and 

bioavailability of this matter can differ seasonally and spatially as it is continuously 

altered by degradative and formative physicochemical and biological processes 

(Benner and Amon, 2015; Jiao et al., 2010; Nagata 2000). In this study we find that 

spatial differences in the nutrient status and DOM characteristics play an important 

role in controlling the bacterial utilisation of DOC, thus controlling the BGE and 

influencing the DOM pool itself. 

 

4.1. Spatial variation and within basin similarity. The unique hydrology and 

extensive latitudinal expanse of the Baltic Sea maintains a high degree of spatial and 

seasonal physicochemical variation. Clear differences in biological communities and 

processes also exist, including at the basal microbial level (e.g. Andersson et al., 

2015; Herlemann et al., 2011). Within the bounds of each of the three major basins 

studied, the sampled stations showed clear physicochemical similarities (Fig. S1, 

Table 1) and were in general significantly different from other basins (Table S1). This 

affirms spatial physicochemical gradients (Table 1) and validates the consideration of 

offshore water-bodies within each basin as single entities for the purpose of this, and 

similarly designed studies.  

 

In contrast to other studies (compiled in Hoikkala et al., 2015) we recorded higher 

DOC concentrations at the southerly Baltic Proper stations. This was likely due to the 

dual effect of the relative closeness to land of the southern stations sampled and the 

presence of an extensive phytoplankton bloom at the time of sampling (Hansson and 

Öberg, 2011). Importantly, our data show that the composition of the DOM pool 
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differed strongly between the studied basins (Fig. S2 and S3) and this is particularly 

germane for such studies, as these characteristics influence DOM bioavailability or 

reactivity (Asmala et al., 2013; Autio et al., 2015; Benner and Amon, 2015). Water 

colour (CDOM, Harvey et al., 2015), DOM aromaticity (SUVA254, Weishaar et al., 

2003) and levels of secondary humic material of terrestrial origin (peak C, Cammack 

et al., 2004; Stedmon and Markager, 2005) were all highest in the northern Bothnian 

Bay basin and lower in the Baltic Proper. On the other hand S275-295 and a254:a365 

were highest in the Baltic Proper, both inversely related to the DOM molecular weight 

(Asmala et al., 2013; Fichot and Benner, 2012; Helms et al., 2008; Wallin et al., 

2015). Taken together these data indicate clear spatial trends that are in accordance 

with the strong terrestrial influence in the northerly basins (Alling et al., 2008; 

Deutsch et al., 2012; Harvey et al., 2015; Stedmon et al., 2007) and are indicative of 

more autochthonous DOM sources in the southerly Baltic Proper (Andersson et al., 

2015; Hoikkala et al., 2015; Maciejewska and Pempkowiak, 2014). 

 

4.2. Bacterial growth, DOC utilisation and BGE. BA in all microcosms generally 

reached highest levels by day three or five before it plateaued or decreased. Despite 

similar starting rates on day zero BP differed strongly between basins, with highest 

rates recorded in the Bothnian Sea microcosms. It is possible that this is due to a more 

suitable stoichiometric balance of nutrients in the Bothnian Sea (Table 1). This active 

phase of the incubation (day 0-5) corresponded with the phase during which DOC 

utilisation also took place. During this phase, largest mean DOC utilisation was 

recorded in the southerly Baltic Proper basin (~30%) and decreased in a northerly 

direction (Bothnian Sea ~12% and Bothnian Bay ~4%), with values being in a similar 

range to previous studies (Asmala et al., 2013; Hoikkala, 2015; Zweifel et al., 1993). 
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Highest DOC utilisation occurred in the region with higher starting DOC 

concentrations, as Søndergaard and Middelboe (1995) found in a large cross-system 

analysis. However, the clear regional differences in the DOM pool characteristics 

indicate that the control of bacterial DOC utilisation is a more complex process. The 

prevailing conditions resulted in BGE values that were comparable with similar 

studies (Asmala et al., 2013; Attermeyer et al., 2014; Figueroa et al., 2016). However, 

BGE was negatively correlated with DOC utilisation. BGE values were highest in the 

Bothnian Bay basin (~25 %) and decreased in a southerly direction (~16 and ~2 %, 

Bothnian Sea and Baltic Proper, respectively). Similar relationships have been 

reported recently where higher BGE levels were found in river waters strongly 

influenced by humic matter or forested soils, supporting the notion that DOM 

characteristics influence bacterial metabolism (Autio et al., 2015; Berggren and del 

Giorgio, 2015). 

 

4.3. Influence of nutrients on bacterial activity. The addition of N and P (+NP) 

resulted in significantly elevated BA and BP rates in the Baltic Proper and Bothnian 

Bay microcosms (Table 2). In essence nutrient addition sustained a longer period of 

elevated BA and BP (Fig. 2, and BPcum Table 3). However, little effect was seen on 

DOC utilisation and only in the Bothnian Bay did it result in a markedly different 

basin mean BGE (Table 3). This strong increase in BGE in the Bothnian Bay may 

relate to the adjusted C:N:P stoichiometric ratios that aligned all basin ratios more 

closely in the +NP treatments (basin mean C:N:P = 19-34:2:1), in particular reducing 

the C:P ratios that were at their most extreme in the Bothnian Bay natural waters 

(Table 1). While stoichiometric ratios of these vital nutrients have been shown to be 

important in marine systems (Thingstad  et al., 2008; Andersson et al., 2013) the 
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addition of P would likely have alleviated the major limiting nutrient in the Bothnian 

Bay (Tamminen and Andersen, 2007; Andersson et al., 2015). Furthermore, nutrient 

addition did not induce significant changes in DOM characteristics (Table 3), which 

showed stronger and significant changes spatially and over the time period of the 

incubation (Table 2). The lack of change in DOM degradation may indicate that 

nutrient addition did not strongly alter the bacterial community composition, that 

functional redundancy within the local bacterial community strongly determines the 

outcome, or that a common pool of generalist bacteria drove the degradation of DOM 

at each site (Allison and Martiny, 2008; Attermeyer et al., 2014; Dinasquet et al., 

2013). However specific studies would be required to clarify these issue since our 

measurements generally encompass bulk values and net changes during the 

experiment. 

 

Despite the relatively unaltered DOM processing due to nutrient supplementation, 

ambient starting nutrient concentrations (and stoichiometric ratios) correlated closely 

with changes in BA (standard microcosms only). High starting concentrations of TN 

and TP, plus low C:P and N:P stoichiometric ratios resulted in larger increases in BA. 

However, no corresponding correlation was found with DOC. While the 

concentrations and stoichiometric ratios of these elements at the start of the incubation 

are important, and have the potential to limit bacterial growth (Degerman et al., 2013; 

Zweifel et al., 1993), the minimal number of close correlations with BP, BGE or 

changes in DOM characteristic variables indicate that there are clear differences 

between the influence of nutrients on growth (i.e. BA) and the physiological processes 

taking place (Guillemette and del Giorgio, 2012). This further supports the reasoning 

that changes seen here relate to the physiological capacity of stable local bacterial 
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communities. However, high C:N starting ratios correlated with largest decreases in 

DOC during the active phase of the experiment, and with the lowest BGE values. This 

supports previous suggestions that in addition to the DOM characteristics and the total 

BA or BP capacity, the metabolic balance (i.e. BGE) of the bacterial community is 

also vital (Guillemette and del Giorgio, 2012). 

 

4.4. DOM characteristics and bacterial interaction. Clear differences in DOM 

characteristics were recorded across the studied gradient, including support for the 

hypothesis that DOM would be more strongly autochthonous in the south. 

However, during the active period of incubation the molecular weight of the DOM 

pool (as defined by the S275-295 proxy) decreased in the Baltic Proper, whereas it 

increased in microcosms from the two more northerly basins (Table 3). In the Baltic 

Proper microcosms a clear increase in CDOM was also observed during incubation 

(Fig. S2). This would suggest that larger molecular weight constituents within the 

Baltic Proper DOM pool were broken down, whereas DOM components of a larger 

size became relatively more dominant in the DOM pool of the northerly basins. 

Concurrently, bacterial activity contributed to the production of CDOM in Baltic 

Proper microcosms, as reported from other systems (Kramer and Herndl, 2004; 

Nelson et al., 2004; Yamashita and Tanoue, 2004). However, the exact nature of this 

processed portion of the DOM pool, and its interaction with resident biological 

communities, is complex. The Baltic Proper DOM pool became increasingly aromatic 

in nature during incubation (Table 3), with the relative change in DOC (i.e. 

utilisation) and change in aromaticity being associated, and the highest levels of DOC 

utilisation corresponding to highest levels of aromaticity increase. Thus, bacterial 

activity in the Baltic Proper decreased DOC concentrations, breaking down larger 
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molecular weight compounds and the processed DOM pool was more aromatic and 

contributed to increasing water colour. This appears to relate to functional aspects of 

the local bacterial community and is not at odds with an earlier study that found 

bacteria from the Baltic Proper grew well, if not better than the native bacteria, in 

Bothnian Sea water containing natural DOM (Lindh et al., 2015). However, the high 

initial DOC concentrations recorded in the Baltic Proper, due mainly to a 

contemporary phytoplankton bloom, would also likely have contributed to this trend 

(and to the low BGE recorded in this region). This pool of autochthonous DOC would 

have been readily available and respired, resulting in extensive carbon losses 

(Berggren and del Giorgio, 2015). 

 

Changes to the intrinsic nature of the DOM pool will influence its subsequent 

bioavailability, and have the potential to result in carbon limitation (Carlson and 

Ducklow 1996; Figueroa et al., 2016; Kirchman and Rich, 1997). Such carbon 

limitation scenarios are likely to contribute to the similar temporal patterns of BP and 

BA seen in our experimental microcosms, including the apparently limited influence 

of nutrients. It may be that viral lysis also played a role (e.g. Middelboe and 

Jørgensen, 2006), though this can not be ascertained directly. In experimental systems 

where concurrent physicochemical alteration of a finite DOM pool is limited, and the 

bacterial community remains constrained by the starting inoculum, limitation may 

appear particularly pronounced. However, in the natural environment the dynamic 

nature of these interactions will undoubtedly change this perspective. In the Baltic 

Sea, where waters generally transfer between basins in a southerly direction due to the 

net freshwater influx in the north, the DOM pool is exposed to an extensive 

continuum of biological and physicochemical action. Thus, the patterns of DOM 
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characteristics (and changes) detailed here could conceivably indicate that the DOM 

pool, in addition to being altered by bacterial activity, is also a formative driver of 

local bacterial community structure (Herlemann et al., 2013; Judd et al., 2006; Lindh 

et al, 2015; Logue et al., 2016). 

 

Samples with high aromaticity or high molecular weight (i.e. from more northerly 

basins) generally expressed higher levels of secondary humic matter of terrestrial 

origin (peak C: Cammack et al., 2004; Coble, 1996; Stedmon and Markager, 2005). 

However, during the microcosm incubation these variables responded very differently 

between basins (Table 3). Largest relative increases in aromaticity generally 

corresponding with largest decreases in secondary humic matter. Additionally, during 

microcosm incubation mean basin changes in DOM molecular weight and secondary 

humic matter of terrestrial origin followed latitudinal patterns that were opposite to 

each other (Table 3). In the Baltic Proper bacterial activity depleted secondary humic 

material of terrestrial origin, resulting in smaller molecular weight DOM that was 

more aromatic in nature. Such processes have been observed in the dark ocean where 

heterotrophic production was significant (Jørgensen et al., 2011). On the other hand, 

in the two more northerly basins the DOM pool became less/less strongly aromatic 

and the relative contribution of higher molecular weight secondary humic matter 

increased (Table 3). Furthermore, the trends in secondary humic matter correlated 

with BGE, where microcosms expressing high BGE showed largest increases in 

secondary humic material, whereas microcosms with low BGE expressed smaller 

increases or decreases. This is in keeping with a study in lakes, where largest 

increases in secondary humic peaks were found in incubations dominated by anabolic 

(i.e. high BGE), rather than catabolic (low BGE) processes (Guillemette and del 
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Giorgio, 2012), leading the authors to conclude such factors would also have 

importance for the transfer of energy and nutrients within the food web. 

 

Protein-like peaks (peak B and peak T: Coble, 1996), however, responded quite 

differently to bacterial activity, and although changes were often significant (Table 2) 

the patterns did not follow linearly across the latitudinal gradient studied (Table 3). 

We recorded the largest decreases in protein-like fluorescent peaks in the Bothnian 

Bay (Table 3), a pattern that has also been observed in lakes (Guillemette and del 

Giorgio, 2012). However, in the mid-gradient Bothnian Sea microcosm these two 

peaks appeared to be produced, particularly strongly in the case of peak B. It appears 

that a different process controls the production or utilisation of protein-like 

compounds in this study, with production associated to the BA and BP variables (Fig. 

3 and Table 3), potentially representing cell wall proteins (Kawasaki and Benner 

2006; Stoderegger and Herndl, 1998; Tanoue et al., 1995) or other structural 

components (Kaiser and Benner, 2008; Ogawa et al., 2001). 

 

5. Conclusion. The dual role of bacteria in both utilising and producing DOM, and 

the interplay between DOM characteristics, nutrient status, and bacterial metabolism 

all determine the fate of DOM and thus the composition of the bulk DOM pool. In 

this study we addressed the net balance of these complex processes. Our study 

suggests that spatial differences in DOM characteristics, nutrient levels and nutrient 

stoichiometric ratios are important factors controlling bacterial growth and BGE, and 

that these processes in turn influence the DOM pool. Markedly different DOM-

bacterial interactions were observed in each region of the studied gradient, catalysing 

different consequences for the DOM pool. It is clear that bacterial growth and 
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metabolism (e.g. BGE) can alter the characteristics and properties of the DOM pool 

and that these modifications can influence bioavailability, have repercussions for long 

term carbon sequestration (Brophy and Carlsson 1989; Jiao et al., 2010; Ogawaa et 

al., 2001), and can influence the global carbon cycle (Benner and Amon, 2015; Jiao et 

al., 2010). Furthermore, climate change scenarios indicate that surface water 

warming, elevated rainfall and terrestrial run off, and altered nutrient status within the 

studied system are expected (Eilola, 2013; Graham, 2004; Wikner and Andersson, 

2012). This will influence the complex DOM-nutrient-bacterial interactions that 

currently exist and thereby influence the passage of nutrients and energy to higher 

trophic levels. 
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