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Abstract 

In Antarctica, summer is a time of extreme environmental shifts resulting in large coastal 

phytoplankton blooms fueling the food web. Despite the importance of the microbial loop in 

remineralizing biomass from primary production, studies of how microzooplankton communities 

respond to such blooms in the Southern Ocean are rather scarce. Microzooplankton (ciliate and 

dinoflagellate) communities were investigated combining microscopy and 18S rRNA sequencing 

analyses in the Amundsen Sea Polynya during an extensive summer bloom of Phaeocystis antarctica. 

The succession of microzooplankton was further assessed during a 15-day induced bloom microcosm 

experiment. Dinoflagellates accounted for up to 58% the microzooplankton biomass in situ with 

Gymnodinium spp., Protoperidium spp. and Gyrodinium spp. constituting 87% of the dinoflagellate 

biomass. Strobilidium spp., Strombidium spp. and tintinids represented 90% of the ciliate biomass. 

Gymnodinium, Gyrodinium and tintinnids are known grazers of Phaeocystis, suggesting that this 

prymnesiophyte selected for the key microzooplankton taxa. Availability of other potential prey, such 

as diatoms, heterotrophic nanoflagellates and bacteria, also correlated to changes in microzooplankton 

community structure. Overall, both heterotrophy and mixotrophy appeared to be key trophic strategies 

of the dominant microzooplankton observed, suggesting that they influence carbon flow in the 

microbial food web through top-down control on the phytoplankton community. 
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1. Introduction 

The Southern Ocean (SO) plays a central role in global biogeochemical cycles due to strong 

summer pulses of primary production (Sarmiento et al., 2004). Coastal polynyas, area of seasonally 

open water surrounded by sea ice, contribute strongly to the efficiency of the biological pump through 

massive export of organic material (DiTullio et al., 2000) and formation of deep water masses 

(Williams et al., 2007). The summers, with elevated irradiance, reduced ice cover and subsequent input 

of nutrients, sparks a short but massive burst of phytoplankton in these areas (Smith Jr & Gordon, 

1997; Arrigo et al., 2012). To understand and predict the extent of CO2 sequestration in the SO it is 

therefore important to determine the fate of the extensive phytoplankton blooms occurring in the 

Antarctic polynyas.  

Microzooplankton have been estimated to graze over half of the daily global planktonic primary 

production (Calbet & Landry, 2004; Schmoker et al., 2013) and may thus exert significant top-down 

control on phytoplankton blooms in the SO (Bjørnsen & Kuparinen, 1991; Kuparinen & Bjornsen, 

1992). Despite the key ecological functions of microzooplankton in the carbon cycle as either 

mixotrophs capable of primary production or as a trophic link between the microbial loop and higher 

trophic levels (reviewed in Sherr & Sherr, 2009), they have received little attention in the productive 

polynyas of the SO. The Amundsen Sea Polynya (ASP) is one of the most productive polynya of the 

SO, characterized by dramatic perennial blooms (Arrigo & van Dijken, 2003). In summer 2010-2011 

the Amundsen Sea Polynya International Research Expedition (ASPIRE) aimed to determine the fate 

of the high algal productivity. At the time of sampling, the ASP was undergoing an extraordinary 

bloom event dominated by the prymnesiophyte algae Phaeocystis antarctica (Alderkamp et al., 2015; 

Yager et al., 2016).  
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Microzooplankton grazing pressure on Phaeocystis depends on whether the prymnesiophyte 

occurs in its single-cell or colonial form (Caron et al., 2000; Grattepanche et al., 2011a; Grattepanche et 

al., 2011b). Thus, the succession of the bloom affects the microzooplankton community, its grazing 

pressure (Verity, 2000), and impact on the biological pump. In the ASP, carbon export was high (up to 

62% of net primary production - NPP) and grazing rates were low (32.5% of the NPP in the upper 100 

m of the water column (Yager et al., 2016)) compared to other regions of the SO (Froneman & 

Perissinoto, 1996; Landry et al., 2002; Pearce et al., 2008; Schmoker et al., 2013). Nevertheless, 

microzooplankton grazing pressure on the NPP was far more important than that of mesozooplankton 

(Wilson et al., 2015; Yager et al., 2016) and became increasingly important later during the bloom (Lee 

et al., 2013; Yang et al., 2016). This underlines the importance of understanding the coupling between 

the microzooplankton community and these extraordinary blooms to better predict the fate of the 

carbon. This is pertinent as the Amundsen Sea ice-sheet and sea ice are rapidly melting due to 

environmental warming (Pritchard et al., 2009; Stammerjohn et al., 2015), which may modify the 

magnitude as well as the temporal and spatial dynamics of P. antarctica and diatoms blooms 

(Alderkamp et al., 2012).  

In the present study, we examined the composition of the microzooplankton community in the 

ASP during an intense P. antarctica bloom. To improve taxonomic resolution we combined 

microscopy and 18S rRNA sequencing to characterize the community. Additionally, the 

microzooplankton succession during an intense bloom event was investigated through a 15-day induced 

P. antarctica bloom microcosm experiment. The aim was to improve our understanding of the 

environmental drivers shaping the community of these principal phytoplankton grazers within 

Antarctic polynyas during the productive Austral summer. 
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2. Materials and Methods 

2.1. In situ conditions 

The sampling was conducted during the ASPIRE cruise in November 2010 to January 2011 

onboard RVIB N.B. Palmer (cruise NBP1005; (Yager et al., 2012; Yager et al., 2016). A total of 14 

stations were sampled for microzooplankton analyses, seven via microscopy and four via 18S rRNA 

amplicon sequencing only, plus three stations were analyzed via both methods (Fig. 1). Water was 

collected with 12 l Niskin bottles mounted on a CTD rosette (Sea-Bird 911+). Detailed information on 

methods and in situ environmental parameters measured (phytoplankton pigments, nutrients, bacteria 

and heterotrophic nanoflagellates – HNF abundance) can be found in Yager et al. (2016). Briefly, 

pigments were analyzed by HPLC (Alderkamp et al. 2015), nutrients were measured onboard by 

autoanalyzer (Yager et al. 2016) and bacteria and HNF were counted by flow cytometry (Dinasquet et 

al. 2017; Yager et al. 2016).  

2.2. Microzooplankton community and biomass 

Microscopy samples were collected at 10 of the 14 microzooplankton sampling stations (Fig. 1) 

traversing the ASP from the surface (2 - 5 m), depth of fluorescence max. (DFM, 10 - 40 m), and below 

the fluorescence peak (50 - 180 m). Water from the Niskin bottles was gently siphoned through silicon 

tubes into 300 ml amber colored glass bottles and fixed in acidic Lugol’s solution (2% final 

concentration). Bottles were stored dark at ~15° C (max. 12 months) until appropriate sized sub-

samples (depending on cell concentration) were transferred into sedimentation chambers, allowed to 

settle for 24 hours and microplankton identified and counted under microscope at the Latvian Institute 
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of Aquatic Ecology. Cell volumes were calculated using appropriate geometric shapes following 

(Olenina, 2006). To correct for shrinkage due to Lugol preservation, cell volumes were adjusted by a 

factor of 1.33 (Stoecker et al., 1994). Biomasses of dinoflagellates, loricate and aloricate ciliates were 

calculated using carbon conversion factors by Menden-Deuer and Lessard (2000). 

2.3. RNA extraction, sequencing and taxonomic identification  

Samples for RNA extraction were collected at seven stations from the surface, DFM and the 

bottom water (422 – 1227 m depth). Three of these stations had also been sampled for microscopy at 

the surface and DFM.  Between 1-6 liters of seawater were pre-filtered through a 200 µm mesh net and 

then filtered through a 3µm polycarbonate filter. Filtration time did not surpass 30 minutes to avoid 

RNA degradation. Filters were flash-frozen and stored at -80° C. RNA was extracted using the 

NucleoSpin® RNA L kit (Macherey-Nagel) and quantified using a Nanodrop ND-1000 

Spectrophotometer. To remove DNA from RNA extracts, we used the TurboDNA kit (Ambion). RNA 

were reverse transcribed using the RT Superscript III random primers kit (Invitrogen) and 

hypervariable V4 region was amplified using the universal primers TAReuk454FWD1 (5’-

CCAGCASCYGCGGTAATTCC-3’) and TAReukREV3 (5’-ACTTTCGTTCTTGATYRA-3’) (Stoeck 

et al., 2010). Triplicate amplicon reactions were pooled and purified using NucleoSpin® Extract II 

(Macherey-Nagel). Purified amplicons were quantified with Picogreen (Invitrogen) and pooled in 

equimolar concentration. Amplicon sequencing was carried out on a 454 GS FLX Titanium system 

(454 Life Sciences, USA) at Genoscope (http://www.genoscope.cns.fr/spip/, France).  

 All reads were  processed with Quantitative Insight Into Microbial Ecology pipeline, QIIME v1.4 

(Caporaso et al., 2010). Only reads between 200-500 bp were used. Reads were quality controlled and 

http://www.genoscope.cns.fr/spip/
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denoised using DeNoiser v 0.851 (Reeder & Knight, 2010) implemented in QIIME. Subsequently, 

reads were clustered into Operational Taxonomic Units (OTUs) using UCLUST v1.2.22 (Edgar, 2010) 

at 99% similarity. Chimeras were detected and removed using ChimeraSlayer with a reference database 

derived from PR2 (Guillou et al., 2013). Representative reads were assigned to taxonomy by 

BLASTing them against the databases SILVA v108 (Quast et al., 2013) and PR2 (Guillou et al., 2013). 

Sequences are publicly available at ENA (PRJEB23910). A total of 492527 reads were obtained, only 

ciliate and dinoflagellate related OTUs were kept and the samples were rarefied to 686 reads, for equal 

sequencing depth in all samples. Only OTUs representing > 0.1 % of the total relative abundance of 

ciliates and dinoflagellates were further studied. Maximum likelihood trees were computed with 

MEGA7 (Kumar et al., 2016).   

2.4. Induced bloom microcosm experiment set-up 

The succession of the ciliate and dinoflagellate community was followed during the course of a 

15 day Phaeocystis bloom induced onboard in St. 35 DFM water (12 m). Triplicates incubations in 12 l 

collapsible plastic containers were carried out for both unfiltered water and 200 µm filtrates. The water 

from the Niskin bottles was gently siphoned into a 60 l bucket, and vitamins and nutrients (15 µM 

NH4Cl and 1 µM Na2HPO4) were added before carefully mixing the water for the triplicate aliquots. 

The filtered treatment was done to ensure absence of metazoan predators of dinoflagellates and ciliates, 

by gentle reverse filtration through 200 µm mesh size filters. The containers were incubated at insitu 

light (PAR = 2.04 µmol m
-2

 s
-1

) and temperature (0 ± 0.5 °C) for 15 days and mixed by gentle rotation 

of the containers every 8 h. The light and temperature conditions were monitored regularly during the 

experiment. Samples for nutrients, chlorophyll a (chl a), microzooplankton biomass and species 

composition (analyzed following same procedure as for in situ samples) were collected at the start of 
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the incubation and after 2, 4, 7, 10, 13, and 15 days. HNF were also measured by flow cytometry 

according to Christaki et al. (2011), while bacteria were enumerated with the flow cytometry method 

described by Gasol and del Giorgio (2000) for bacteria. Samples for 18S rRNA based community 

analysis as well as, Phaeocystis and diatom abundances were collected at the start, day 7 and at the end 

of the experiment (pooled triplicates). In order to avoid disturbance from air bubbles during mixing, air 

was squeezed out of the collapsible container after every sampling and only 17% of the volume had 

been removed prior to terminating the experiment. All containers and materials were acid washed prior 

to use.  

Fifty ml samples for phosphate, nitrate, ammonium and silicate were measured onboard, on a 5 

channels auto-analyzer (Lachat Instrument QuikChem FIA +8000 serie). For chl a measurements, 

triplicate 50 ml aliquots from each container were filtered onto Whatmann GF/F filters (0.7 µm) and 

extracted in 96% ethanol for 12 - 24 h (Jespersen & Christoffersen, 1987) before being analyzed on a 

fluorometer (Turner Model 10AU), both before and after acidification (Yentsch & Menzel, 1963). 

Growth rates were calculated for each time step using the equation: 

  
                   

           
, 

where B is the concentration or biomass at sampling day t0 and at the following sampling day t0+n. 

2.5. Data analysis 

Station map, physical conditions, distributions of chl a and microzooplankton along two 

transects were visualized using the Ocean Data View (weighted-average gridding, v. 4.7.1).  
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Microzooplankton species richness, diversity and eveness were calculated using Margalef D, Shannon-

Wiener H’ and Pielou’s J’ indexes, respectively.Size evenness was calculated using cell abundances 

within five biovolume size groups (<2000, 2000-10000, 10000-50000, 50000-250000, >250000 µm
3
).  

Spearman rank correlation analysis between microzooplankton community indices and 

environmental parameters was carried out in Sigmaplot v. 12 (Systat Software, Inc.). Correlation 

between Bray-Curtis dissimilarity matrices of microzooplankton species biomass and Euclidian 

distance resemblance matrices of environmental parameters was tested using the BEST analysis in 

Primer v. 6.1.7 (Primer-E, Ltd). The BIOENV algorithm and Spearman rank correlation method was 

used. A stepwise distance-based linear model permutation test (DistLM, McArdle & Anderson, 2001) 

was also performed to identify environmental variables best predicting community variation. The 

stepwise routine was run employing 9,999 permutations and using the AICc (Akaike’s information 

criterion with second order correction) selection criterion. Results were visualized with a distance-

based redundancy analysis (dbRDA, Anderson et al., 2008). Analysis of similarities in community 

composition (ANOSIM) was carried out by pairwise testing between different depth strata. To identify 

the species contributing most to the similarity between samples, a SIMPER analysis (SIMilarity 

PERcentage, Clarke & Warwick, 2001) was performed. Lastly, testing of similarities between 

microscopy and 18S rRNA Bray-Curtis dissimilarity matrices was done by RELATE analysis of 

Spearman rank correlations. In Primer, depth and Phytosynthetically Active Radiation (PAR) from the 

environmental data and all biomass data were log transformed while abundance data was fourth root 

transformed to reduce the skewedness of data distribution. Environmental data was normalized by 

subtracting means and dividing by the standard deviation (z-scores).  
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3. Results  

3.1. Hydrography and microzooplankton 

The upper part of the water column (30 - 50 m) was characterized by increasing temperatures 

with increasing latitude and proximity to the ice shelf (Fig. 2). Inversely, salinity increased with 

decreasing latitude and proximity to the sea ice surrounding the polynya. Two stations along transect 2 

deviated from this pattern; St. 57.21 where the upper ~100 m was mixed as it was located in the wake 

of a drifting iceberg (Randall-Goodwin et al., 2015; Dinasquet et al., 2017), and St. 35 characterized by 

high surface temperatures. Detailed information on the hydrography is presented elsewhere (Randall-

Goodwin et al., 2015; Yager et al., 2016).  

Chlorophyll a (Chl a) concentration was highest in the top 40 m of the water column and where 

temperatures were elevated, with St. 57.21 and 57.35 as exceptions (Fig. 2). Phaeocystis antarctica 

likely represented most of the phytoplankton contribution to Chl a followed by diatom (Table S1, 

Alderkamp et al., 2015; Yager et al., 2016). Subsurface peaks in dinoflagellate and particularly ciliate 

biomass occurred below the chl a max. at stations closer to the ice shelf and in the wake of the drifting 

iceberg. Dinoflagellate biomass was also high at St. 35, while elevated surface ciliate biomass occurred 

at St. 68 at the fringe of the polynya.  

3.2. Microzooplankton community patterns and environment  

The correlation between environmental parameters and microzooplankton community, 

determined by microscopy, was tested both against indices of community structure (species richness, 

diversity, eveness) and composition (Bray-Curtis dissimilarity). Overall, ciliate biomass was correlated 

to most environmental variables measured, while dinoflagellate biomass, and microzooplankton size 



  

   10 
 

distribution evenness was correlated to all variables (Table 1). Depth was likely a main factor driving 

community structure, as negative correlations were mainly observed with variables that increase with 

depth (salinity, dissolved inorganic nitrogen DIN), and positive correlations with variables decreasing 

with depth. Species richness and diversity displayed similar patterns and were positively correlated to 

heterotrophic nanoflagellate (HNF) abundance. Species richness also increased with chl a 

concentration and concentration of fucoxanthin and 19’-hexanoyloxyfucoxanthin pigments. These 

pigments are generally considered as markers for diatoms and Phaeocystis spp., respectively 

(Alderkamp et al., 2015; Wright et al., 2010).  

The environmental variables that best explained the microzooplankton community composition 

patterns were depth, bacterial abundance and fucoxanthin concentration (BEST, Rho = 0.58, p = 0.01). 

Distance based linear models (DistLM) showed microzooplankton community composition to be 

related to all environmental parameters tested (depth, temperature, salinity,  PAR, total DIN, chl a, 

bacterial and HNF abundance, 19’-hexanoyloxyfucoxanthin and fucoxanthin concentration, p < 0.005). 

Salinity,  bacterial abundance and fucoxanthin concentration generated the lowest AICc score thus 

explaining most of the variance in microzooplankton community composition (AICc = 194.36, R
2
 = 

0.41, Fig. 3). 

3.3. Taxonomy and distribution 

Microscopy-based microzooplankton community dissimilarities were greater between the 

surface and depth of fluorescence max. (DFM) than between sampling stations (p = 0.12), but differed 

significantly from the deeper samples (p < 0.03, Fig. 3). Station 68 located at the edge of the polynya 
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and St. 13, which had the lowest species richness and diversity of all stations, displayed the least 

similarity to the communities seen at the other stations (Fig. 3, 4). 

Microscopy counts indicated that the community was dominated by dinoflagellates constituting 

on average 59% of the microzooplankton biomass in the surface to DFM strata of the water column 

(Fig. 4, Table S1). Gymnodinium spp. and heterotrophic Gyrodinium spirale and Protoperidinium spp. 

(mainly P. depressum) accounted for 89% of the dinoflagellate biomass, but differed in distribution 

patterns (Fig. 4A). Gymnodinium spp. tended to decrease with distance to the ice shelf, while G. spirale 

and Protoperidinium spp. showed inverse distributions between transects 1 and 2. The ciliate 

community was dominated by heterotrophic tintinnids, Strobilidium spp. (mainly S. epacrum and S. 

spiralis) and mixotrophic Strombidium spp. that together contributed with 90% of the ciliate biomass 

(Fig. 4B). The heterotrophic Didinium nasutum represented the highest biomass only on station 48. 

Station 13 and 57.21 were characteristic in featuring fewer microzooplankton than adjacent stations, 

and the ciliate community at St. 13 was dominated solely by tintinnids (Fig. 4). Katodinium glaucum, 

Heterocapsa spp., S. Spiralis (Fig. 4) and several other less abundant taxa (Table S1) were generally 

more abundant in the DFM than at the surface.    

The 18S rRNA analysis confirmed that the microzooplankton community was dominated by 

dinoflagellates representing on average 85% of the microzooplankton amplicons at surface and DFM 

and 68% in deeper waters (>400 m, Fig. 5). The main OTU found in all samples was related to the 

dinoflagellate SL163A10 (99% identity) closely related to Gymnodiniales (Fig. 6A). Other abundant 

dinoflagellates were closely related to Peridiniales, which decreased with depth, and to other 

Gymnodiniales related to Gymnodinium sp. and Gyrodinium sp, which increased with depth. (Fig. 5, 

6A). Ciliates represented on average 15% of the microzooplankton related OTUs at surface and DFM 
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and their contribution increased to ~ 32% at depth. The dominant ciliate OTUs were closely related to 

potential parasites from the Ventrata infraphylum (Fig. 5, 6B; Gomez-Guttierez et al., 2006; Gomez-

Guttierez et al., 2012). Other abundant ciliate OTUs were related to Choreotrichia, Oligotrichia, and 

Haptoria.  

Dissimilarity analysis of 12 microzooplankton taxonomic orders identified in either the 

sequencing or microscopy dataset (Fig. 4, S1, Table S1, S2) from 6 overlapping samplings (St. 48, 50, 

57.21 at surface and DFM, Fig. 1) showed no significant correlation between their relative abundance 

in the 18S rRNA amplicon dataset and biomass (Rho = 0.46, p = 0.11) or cell abundance (Rho = 0.4, p 

= 0.08). 

3.4. Succession during an induced Phaeocystis bloom 

During the course of the induced experimental Phaeocystis bloom, no major differences were 

observed between filtered and unfiltered water. No metazoans were observed during the experiment in 

any treatment. Chl a increased about 5-folds in both treatments over the course of the incubation (Fig. 

7A). The increase in chl a was mainly associated with a 4-fold increase in Phaeocystis antarctica 

reached an average biomass of 750 µg C l
-1

 on day 15. Many large P. antarctica colonies were 

observed in all replicate containers. Diatoms also increased up to an estimated biomass of 250 µg C l
-1

 . 

The dominant dinoflagellates Gymnodinium spp. and Gyrodinium spirale increased over the course of 

the bloom, especially Gymnodinium spp., with a growth rate of ~0.18 d
-1

, reaching a biomass of 100 µg 

C l
-1

 in the unfiltered treatments (Fig. 7.B, C, D, Table S3). The most abundant dinoflagellate OTU was 

related to SL163A10 (based on 18S DNA sequencing; data not shown). Other dinoflagellate taxa 

remained stable or decreased during the experiment (Fig. 7D, Table S3). Tintinnids were the main 
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group of ciliates responding to the extended bloom with a biomass of up to 8 µg C l
-1

 and a growth rate 

of 0.21 d
-1

 in the unfiltered treatment (Fig. 7E, F, Table S3). Other ciliates (e.g. Strobilidium spp. and 

Strombidium spp.) decreased slightly during the course of the experiment.  

 

4. Discussion 

In early summer, the open waters of the Amundsen Sea polynya (ASP) harbor extensive 

episodic blooms of the colony forming prymnesiophyte Phaeocystis sp. (Alderkamp et al., 2012; 

Arrigo et al., 2012). At the time of sampling in summer 2010-2011, the full net primary production was 

principally exported to deeper water or grazed by microzooplankton (Yager et al., 2016). Our study 

suggests that grazing pressure on the bloom in the ASP was mainly due to dinoflagellates known to be 

mixotrophs and heterotrophs, and hence our work provides further insights about the composition and 

dynamics of the microzooplankton community in the poorly explored polynyas of the Southern Ocean 

(SO). 

4.1. Patterns in microzooplankton community structure  

Known heterotrophic and mixotrophic dinoflagellates, mainly Gymnodinium, Gyrodinium and 

Protoperidinium, dominated the ASP microzooplankton community. These three genera were also 

dominant in the ASP in time periods following after the present study (Yang et al., 2016) and are 

known to be widely distributed across the SO (Stoecker et al., 1995; Safi et al., 2007; Pearce et al., 

2008; Garzio & Steinberg, 2013; Christaki et al., 2015). Less abundant ciliates known to be 

heterotrophic or mixotrophic, particularly loricate tintinnids and aloricate Strobilidium spp. and 

Strombidium spp., also constituted an important part of the community. This differs from other studies 
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in the Amundsen Sea (AS) where the oligotrichs: Tontonia spp., and the choreotrichs: Lohmanniella 

oviformis dominated the ciliate assemblage while tintinnids were few and Strobilidium spp. was absent 

(Dolan et al., 2013; Jiang et al., 2014; Jiang et al., 2016). Strobilidium and Lohmanniella are 

morphologically similar and may have been misidentified in either our study or by (Jiang et al., 2014; 

Jiang et al., 2016). High abundance of both genera have been reported from the AS (Wickham et al., 

2011) and the Kerguelen area in the SO (Christaki et al., 2015).  

     Microzooplankton community structure changed with depth and distance to the ice shelf, and 

positively correlated mainly with salinity, abundance of bacteria, concentration of the diatom pigment 

marker fucoxanthin and heterotrophic nanoflagellates (HNF). These relationships may be explained by 

all trophic levels responding to the same environmental drivers or by direct predator-prey relationships. 

Low picophytoplankton biomass in the ASP (Lee et al., 2012; Yang et al., 2016) may have resulted in a 

dietary shift for HNF to primarily graze on bacteria (Gonzalez et al., 1990; Pearce et al., 2011) and in 

turn being grazed by heterotrophic dinoflagellates and ciliates (Kuparinen & Bjornsen, 1992; Jürgens et 

al., 1996). Some ciliates are also capable of grazing directly on bacteria (Sherr & Sherr, 2002). Larger 

diatoms (>15 µm in length), which accounted for most of the diatom biomass (data not shown), are 

mainly grazed by heterotrophic dinoflagellates (Hansen, 1992; Sherr & Sherr, 2007; Grattepanche et 

al., 2011b). Thus, changes in diatom contribution to a Phaeocystis dominated phytoplankton 

community, as well as HNF abundance are expected to propagate into the microzooplankton 

community structure. Although mesozooplankton biomass was generally low, predation likely affected 

the microzooplankton assemblage at St. 13, which experienced the highest mesozooplankton grazing 

(Wilson et al., 2015; Yager et al., 2016) and where the ciliates were almost exclusively tintinnids, a 

group known to be more resistant to metazoan predation (Stoecker, 2012). Lastly, lower 
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microzooplankton biomass at the DFM and different community structure (e.g. higher Strombidium 

spp. and lower Heterocapsa spp. biomass) was observed at St. 57.21 and 68 compared to the other 

stations. This may be due to indirect or direct effect of upwelling of deeper water masses downstream 

of a drifting iceberg at St. 57.21 or greater contribution of sea ice melt water at St. 68 (Randall-

Goodwin et al., 2015), which were shown to increase of biological production, (e.g. St. 57.21; 

Dinasquet et al., 2017; Alderkamp et al., 2015) and to affect zooplankton community structure (Wilson 

et al. 2015). 

4.2. Morphological and molecular analyses of microzooplankton composition and dynamics 

While morphological and molecular information on microzooplankton are generally not directly 

comparable (Medinger et al., 2010; Monchy et al., 2012; Christaki et al., 2015) due to large variations 

in 18S rDNA copies per organism (Zhu et al., 2005; Gong et al., 2013) and the limited taxonomic 

resolution provided by morphology, the two methods are complementary.Both methods showed that 

the microzooplankton community was dominated by dinoflagellates, in particular the Gymnodiniaceae 

family, which dominated at most stations. Surprisingly, Peridiniales-related sequences were few despite 

representing a substantial fraction of the dinoflagellate biomass, possibly due to relatively inefficient 

RNA extraction from thecate dinoflagellates. Members of the Gymnodicianiceae family have very 

similar morphological attributes, which makes them difficult to distinguish (Gast et al., 2006). Here, 

through sequencing, the dominant dinoflagellates were identified as closely related to SL163A10; a 

species also very abundant in the Ross Sea Polynya (Gast et al., 2006) and the Antarctic peninsula 

(Luria et al., 2014). This dinoflagellate was also found to be the dominant protist in the ASP sea ice at 

the time of sampling, where it may play an important ecological role (Torstensson et al., 2015).  
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Whereas both methods reported similar proportions of ciliates and dinoflagellates, the detailed 

taxonomic information was not comparable. For instance, Strombidium spp., Strobilidium spp. and 

tintinnids had the highest biomasses, but the sequencing did not match their relative biomass or 

abundance contribution. Tintinnids, which are detectable by both methods (Bachy et al., 2011), were 

underrepresented in our sequencing dataset. Tintinnids, Strombidium spp. and Strobilidium spp. have 

distinct morphological features and it is unlikely that they were mistaken for one another through 

microscopy. Thus, the differences observed may either be related to preservation or sequencing bias, 

such as the extraction efficiency and RNA recovery, the primer pair used as well as the downstream 

bioinformatics analysis. However, ciliates related to the Oligohymenophorea class were the most 

abundant in the sequencing dataset especially in deep waters, as found in other studies (Zoccarato et al., 

2016; Zhao et al., 2017). They may have been overlooked in the microscope as their pelagic stage is 

usually a dormant cyst like form, which is difficult to identify. Interestingly, many taxa related to 

Oligohymenophorea are potential symbionts and parasites of crustaceans (Gómez-Gutiérrez et al., 

2006; Gomez-Gutierrez et al., 2012), but their importance for zooplankton population dynamics in the 

Southern Ocean is so far unknown.  

4.3. Microzooplankton ecology during a Phaeocystis bloom in the ASP 

Phaeocystis antarctica was by far the most abundant phytoplankton in the ASP at the time of 

sampling (Alderkamp et al., 2015; Yager et al., 2016, Table S1). Particular interest have been given to 

Phaeocystis due to its production of dimethysulfoniopropionate, (DMSP, reviewed in Liss et al., 1994) 

and high rates of primary production (DiTullio et al., 2000; Alderkamp et al., 2012). This 

prymnesiophyte is ubiquitous in marine environments where it can form dense blooms (Schoemann et 

al., 2005). Rapid increase of Phaeocystis may in part be ascribed to its capacity to form large colonies 
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not readily grazed  by micro- and mesozooplankton (Caron et al., 2000; Jakobsen & Tang, 2002; 

Nejstgaard et al., 2007; Grattepanche et al., 2011b). The capacity of some microzooplankton species, 

such as Gyrodinium spp., Gymnodinium spp. and tintinids, to graze on single-cells and small colonies 

of Phaeocystis (Admiraal & Venekamp, 1986; Bjørnsen & Kuparinen, 1991; Stoecker et al., 1995; 

Nejstgaard et al., 2007; Grattepanche et al., 2011a), would nevertheless explain the dominance of these 

species at the time of sampling. Gyrodinium spp., Gymnodinium spp. and tintinids were also found to 

co-dominate during Phaeocystis blooms in McMurdo Sound and the North Sea (Weisse & Scheffel-

Möser, 1990; Stoecker et al., 1995). The intense phytoplankton growth observed in the induced bloom 

experiment, despite an increased dominance of known Phaeocystis grazers, suggested that P. 

antarctica were not controlled by microzooplankton herbivory possibly because of low grazing rates 

(Caron et al., 2000; Yager et al., 2016) at this colonial stage of the bloom. However, higher grazing 

rates of 90% d
-1

 were observed later in the ASP (Yang et al., 2016), suggesting the capacity of 

microzooplankton to control the later stage of the Phaeocystis bloom where colonies breakup into 

single-cells. Single Phaeocystis cells are more vulnerable to predation and are often released from 

colonies later in the season possibly when nutrients become limiting (Jakobsen & Tang, 2002; Smith et 

al., 2003; Nejstgaard et al., 2007). 

Most of the ciliates we observed in the ASP were heterotrophs with the ability to graze on 

single-cell Phaeocystis and small diatoms (Grattepanche et al., 2011a; Dolan et al., 2013). The 

dominant dinoflagellate Gymnodinium spp. is capable of grazing on small Phaeocystis colonies 

(Grattepanche et al., 2011b). In the present study, the most abundant microzooplankton 

Gymnodiniaceae SL163A10 engage in kleptoplasty of P. antarctica chloroplasts (Gast et al., 2007). 

This dinoflagellate is ubiquitous in the SO, in waters and sea ice (Gast et al., 2006; Luria et al., 2014; 
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Torstensson et al., 2015, this study), suggesting that its mixotrophic life strategy is highly successful. 

The observed microzooplankton community shift towards the dominance of Gymnodinium spp. (83% 

of microzooplankton biomass) in the microcosm experiment also underlines this species ability to 

thrive in an environment dominated by Phaeocystis colonies. Nevertheless, the relative importance of 

its primary vs. secondary production within the food web is not known. Mixotrophic dinoflagellates are 

important phytoplankton grazers in the SO open waters and semi-enclosed polynyas (Gast et al., 2006; 

Christaki et al., 2015) and potentially important prey for zooplankton grazers, although they did not 

sustain high biomass of zooplankton in the ASP (Lee et al., 2013; Wilson et al., 2015).  

4.4 Concluding remarks 

During this study, colonial Phaeocystis were grazed at low rates, but sustained a high biomass of 

specialized microzooplankton capable of grazing on them. Although taxa known to be mixotrophic 

were important, heterotrophy appeared to be the main life strategy for the microzooplankton. The 

presence of Phaeocystis colonies appeared to determine the key microzooplankton taxa, while other 

potential prey seemed more important for shaping the community composition of less abundant taxa 

within the ASP. The early shift in community composition observed during the induced bloom 

experiment as well as the major differences in microzooplankton community composition and biomass 

observed few days later in the polynya (Jiang et al., 2014; Yang et al., 2016) are consistent with the 

pronounced and selective impact of Phaeocystis blooms on growth, biomass and composition of the co-

occurring microzooplankton. These Phaeocystis-microzooplankton interactions undoubtedly affect 

biogeochemical nutrient fluxes in euphotic Southern Ocean waters. Nevertheless, the consequences for 

vertical carbon export remains to be addressed. 
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Table 1: Spearman correlation coefficients between environmental variables and dinoflagellate and 

ciliate species richness (D), diversity (H'), evenness (J' species), size distribution evenness (J' size) and 

biomasses.  

  D H' J' species J' size Dinoflagellates Ciliates 

Depth  0.105 -0.179  0.082 -0.535** -0.585** -0.431* 

Temperature  0.284  0.155 -0.114  0.553**  0.682**  0.609** 

Salinity -0.422* -0.47* -0.143 -0.640** -0.714** -0.544** 

PAR
1
  0.105  0.212  0.038  0.469*  0.515**  0.461** 

DIN
2
 -0.497** -0.331  0.005 -0.692** -0.825** -0.460* 

Chl a  0.402*  0.291 -0.035  0.738**  0.782**  0.337* 

Fucoxanthin  0.464*  0.350  0.026  0.820**  0.829**  0.477* 

19'-Hexanoyloxyfucoxanthin  0.474*  0.283 -0.049  0.723**  0.756**  0.268 

HNF
3
  0.540**  0.502**  0.155  0.773**  0.842**  0.576** 

Bacteria  0.206  0.117 -0.169  0.416*  0.556**  0.012 

* p < 0.05, ** p < 0.01, 1Phytosynthetically Active Radiation, 2Dissolved Inorganic Nitrogen, 3Heterotrophic 

Nanoflagellates 

  



  

   29 
 

 

Figure 1: Location of the ASPIRE stations, sampled for microscopy analyses (●) and 18S rRNA (○). 

Depth contours are illustrated in gray scale. Station numbers are indicated. 
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Figure 2: Vertical distribution patterns of temperature, salinity, chl a, dinoflagellate and ciliate biomass 

along two latitudinal transects crossing the polynya. Data also presented in Yager et al. (2016).   
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Figure 3: Distance based linear modelling (DistLM) plot on Bray-Curtis similarities of log transformed 

ciliate and dinoflagellate species biomass data at 28 sampling points in relation to log transformed and 

normalized environmental parameters. dbRDA1 explained 82.9% of fitted and 34% of total variation 

while dbRDA2 explained 12.8% and 5.2%, respectively. Overlaid is community similarity levels based 

on Bray-Curtis resemblance matrices. Station numbers are indicated. 
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Figure 4: Biomass distribution of dominant dinoflagellate (A) and ciliate (B) taxa along two transects 

at the surface (2 - 5 m) and depth of fluorescence max. (DFM, 10 - 40 m). Note: the color code for the 

different taxa is in the same order in the legend and the bar chart. 
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Figure 5: Relative abundance of the main dinoflagellates (A) and ciliates (B) groups at each sampled 

station for 18S RNA genes analysis. For each station 3 depths are represented surface, depth of 

fluorescence max. (DFM) and bottom water (422 – 1227 m depth), except for stations 6 and 57.02 

where only surface and DFM are presented. Only OTUs representing more than 0.1% of the total 

relative abundance of ciliates and dinoflagellates were included. 
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Figure 6: Maximum likelihood tree of the operational taxonomic units (OTU) closely related to 

dinoflagellates (A) and ciliates (B). Only OTUs representing more than 0.1% of the total relative 

abundance of ciliates and dinoflagellates 18S RNA gene reads are included. Reference sequences are 

indicated in italics. Sea ice OTUs come from a study of protists in the ASP sea ice during the same 

sampling time (Torstensson et al. 2015). Bootstrap values (n = 1000) are indicated at nodes; scale bar 

represents changes per positions. 
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Figure 7: Chlorophyll a concentration (symbols) and biomass of dominant phytoplankton (bars, A). 

Biomass of the dominant dinoflagellates (Gymnodinium spp. B., Gyrodinium spirale C. and others D.) 
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and ciliates (Tintinnids E. and others F.) over the course of the induced Phaeocystis antarctica bloom. 

Mean ± SD for 3 replicates for each treatment. 
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Microzooplankton distribution in the Amundsen Sea Polynya (Antarctica) during an 

extensive Phaeocystis antarctica bloom  

Rasmus Swalethorp, Julie Dinasquet, Ramiro Logares, Stefan Bertilsson, Sanne Kjellerup, Anders K. 

Krabberød, Per-Olav Moksnes, Torkel G. Nielsen, and Lasse Riemann 

Highlights:  

 This study describes the dinoflagellate and ciliate summer community in the Amundsen Sea 

Polynya. 

 Main taxa were mixotrophs and heterotrophs known to graze on Phaeocystis antarctica. 

 Other potential prey were also important in shaping the microzooplankton community. 

 Microscopy and sequencing results gave complementary insights on the community. 

 

 


