44 research outputs found

    Distinct conformational stability and functional activity of four highly homologous endonuclease colicins

    Get PDF
    The family of conserved colicin DNases E2, E7, E8, and E9 are microbial toxins that kill bacteria through random degradation of the chromosomal DNA. In the present work, we compare side by side the conformational stabilities of these four highly homologous colicin DNases. Our results indicate that the apo-forms of these colicins are at room temperature and neutral pH in a dynamic conformational equilibrium between at least two quite distinct conformers. We show that the thermal stabilities of the apo-proteins differ by up to 20degreesC. The observed differences correlate with the observed conformational behavior, that is, the tendency of the protein to form either an open, less stable or closed, more stable conformation in solution, as deduced by both tryptophan accessibility studies and electrospray ionization mass spectrometry. Given these surprising structural differences, we next probed the catalytic activity of the four DNases and also observed a significant variation in relative activities. However, no unequivocal link between the activity of the protein and its thermal and structural stability could easily be made. The observed differences in conformational and functional properties of the four colicin DNases are surprising given that they are a closely related ( greater than or equal to65% identity) family of enzymes containing a highly conserved (betabetaalpha-Me) active site motif. The different behavior of the apo-enzymes must therefore most likely depend on more subtle changes in amino acid sequences, most likely in the exosite region (residues 72-98) that is required for specific high-affinity binding of the cognate immunity protein

    ATP Changes the Fluorescence Lifetime of Cyan Fluorescent Protein via an Interaction with His148

    Get PDF
    Recently, we described that ATP induces changes in YFP/CFP fluorescence intensities of Fluorescence Resonance Energy Transfer (FRET) sensors based on CFP-YFP. To get insight into this phenomenon, we employed fluorescence lifetime spectroscopy to analyze the influence of ATP on these fluorescent proteins in more detail. Using different donor and acceptor pairs we found that ATP only affected the CFP-YFP based versions. Subsequent analysis of purified monomers of the used proteins showed that ATP has a direct effect on the fluorescence lifetime properties of CFP. Since the fluorescence lifetime analysis of CFP is rather complicated by the existence of different lifetimes, we tested a variant of CFP, i.e. Cerulean, as a monomer and in our FRET constructs. Surprisingly, this CFP variant shows no ATP concentration dependent changes in the fluorescence lifetime. The most important difference between CFP and Cerulean is a histidine residue at position 148. Indeed, changing this histidine in CFP into an aspartic acid results in identical fluorescence properties as observed for the Cerulean fluorescent based FRET sensor. We therefore conclude that the changes in fluorescence lifetime of CFP are affected specifically by possible electrostatic interactions of the negative charge of ATP with the positively charged histidine at position 148. Clearly, further physicochemical characterization is needed to explain the sensitivity of CFP fluorescence properties to changes in environmental (i.e. ATP concentrations) conditions

    Applying two-photon excitation fluorescence lifetime imaging microscopy to study photosynthesis in plant leaves

    Get PDF
    This study investigates to which extent two-photon excitation (TPE) fluorescence lifetime imaging microscopy can be applied to study picosecond fluorescence kinetics of individual chloroplasts in leaves. Using femtosecond 860 nm excitation pulses, fluorescence lifetimes can be measured in leaves of Arabidopsis thaliana and Alocasia wentii under excitation-annihilation free conditions, both for the F0- and the Fm-state. The corresponding average lifetimes are ~250 ps and ~1.5 ns, respectively, similar to those of isolated chloroplasts. These values appear to be the same for chloroplasts in the top, middle, and bottom layer of the leaves. With the spatial resolution of ~500 nm in the focal (xy) plane and 2 μm in the z direction, it appears to be impossible to fully resolve the grana stacks and stroma lamellae, but variations in the fluorescence lifetimes, and thus of the composition on a pixel-to-pixel base can be observed

    Sensitive Spectroscopic Detection of Large and Denatured Protein Aggregates in Solution by Use of the Fluorescent Dye Nile Red

    Get PDF
    The fluorescent dye Nile red was used as a probe for the sensitive detection of large, denatured aggregates of the model protein β-galactosidase (E. coli) in solution. Aggregates were formed by irreversible heat denaturation of β-galactosidase below and above the protein’s unfolding temperature of 57.4°C, and the presence of aggregates in heated solutions was confirmed by static light scattering. Interaction of Nile red with β-galactosidase aggregates led to a shift of the emission maximum (λmax) from 660 to 611 nm, and to an increase of fluorescence intensity. Time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) measurements showed that Nile red detected large aggregates with hydrodynamic radii around 130 nm. By steady-state fluorescence measurements, it was possible to detect 1 nM of denatured and aggregated β-galactosidase in solution. The comparison with size exclusion chromatography (SEC) showed that native β-galactosidase and small aggregates thereof had no substantial effect on the fluorescence of Nile red. Large aggregates were not detected by SEC, because they were excluded from the column. The results with β-galactosidase demonstrate the potential of Nile red for developing complementary analytical methods that overcome the size limitations of SEC, and can detect the formation of large protein aggregates at early stages

    Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes

    Get PDF
    We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the chirally organized macrodomains containing the main chlorophyll a/b light-harvesting complexes. The mutation also brings about changes in the overall chlorophyll fluorescence lifetimes, measured in whole leaves as well as in isolated thylakoids. As shown by time-resolved measurements, using the lipophylic fluorescence probe Merocyanine 540 (MC540), the altered lipid composition affects the packing of lipids in the thylakoid membranes but, as revealed by flash-induced electrochromic absorbance changes, the membranes retain their ability for energization. Thermal stability measurements revealed more significant differences. The disassembly of the chiral macrodomains around 55°C, the thermal destabilization of photosystem I complex at 61°C as detected by green gel electrophoresis, as well as the sharp drop in the overall chlorophyll fluorescence lifetime above 45°C (values for the wild type—WT) occur at 4–7°C lower temperatures in dgd1. Similar differences are revealed in the temperature dependence of the lipid packing and the membrane permeability: at elevated temperatures MC540 appears to be extruded from the dgd1 membrane bilayer around 35°C, whereas in WT, it remains lipid-bound up to 45°C and dgd1 and WT membranes become leaky around 35 and 45°C, respectively. It is concluded that DGDG plays important roles in the overall organization of thylakoid membranes especially at elevated temperatures

    Real-time enzyme dynamics illustrated with fluorescence spectroscopy of p-Hydroxybenzoate Hydroxylase.

    Get PDF
    We have used the flavoenzyme p-hydroxybenzoate hydroxylase (PHBH) to illustrate that a strongly fluorescent donor label can communicate with the flavin via single-pair Forster resonance energy transfer (spFRET). The accessible Cys-116 of PHBH was labeled with two different fluorescent maleimides with full preservation of enzymatic activity. One of these labels shows overlap between its fluorescence spectrum and the absorption spectrum of the FAD prosthetic group in the oxidized state, while the other fluorescent probe does not have this spectral overlap. The spectral overlap strongly diminished when the flavin becomes reduced during catalysis. The donor fluorescence properties can then be used as a sensitive antenna for the flavin redox state. Time-resolved fluorescence experiments on ensembles of labeled PHBH molecules were carried out in the absence and presence of enzymatic turnover. Distinct changes in fluorescence decays of spFRET-active PHBH can be observed when the enzyme is performing catalysis using both substrates p-hydroxybenzoate and NADPH. Single-molecule fluorescence correlation spectroscopy on spFRET-active PHBH showed the presence of a relaxation process (relaxation time of 23 mus) that is related to catalysis. In addition, in both labeled PHBH preparations the number of enzyme molecules reversibly increased during enzymatic turnover indicating that the dimer-monomer equilibrium is affected

    Revealing heterogeneity in correlation times of EGFP encapsulated in complex coacervate core micelles by analysis of fluorescence anisotropies

    No full text
    Encapsulation of enhanced green fluorescent protein (EGFP) in complex coacervate core micelles (C3Ms) can be established by mixing EGFP with diblock polymers at equal charge ratio. It has previously been shown that this encapsulation system is highly dynamic, implying existence of different populations; GFP free in solution or complexed with polymers (small complexes) and EGFP encapsulated in C3Ms. We performed time resolved fluorescence anisotropy experiments to determine the relative populations of EGFP encapsulated in C3Ms using three different fluorescence anisotropy decay analysis methods. First, Maximum Entropy Method (MEM) data analysis was employed for five different EGFP concentrations in C3Ms that were mixed with dark fluorescent proteins (10, 20, 30, 40 and 50% EGFP, respectively). In all cases, correlation-time distributions between 0.1 and 100 ns (on a logarithmic timescale) are clearly visible showing bimodal distribution. The distribution between 0.1 and 2.0 ns is due to homo-FRET between EGFP molecules packed in micelles and the distribution between 8 and 30 ns coincides with the correlation-time distribution of free EGFP in solution. The fraction of homo-FRET distribution linearly increases with increase of relative micellar EGFP concentrations. These MEM results were corroborated by two different analysis methods: global population analysis of all five fluorescence anisotropy decays arising from EGFP in micelles together with the one of free EGFP (direct analysis of anisotropies) and global associative population analysis of anisotropies by fitting parallel and perpendicular fluorescence decay components. In contrast to global analyses approaches, the MEM method directly reveals distributions of correlation times without any prior information about the sample. However, global associative analysis of anisotropies by fitting parallel and perpendicular fluorescence decay components is the only method that allows to estimate accurately fractions of free fluorophores in solution and encapsulated fluorophores

    Global analysis of autocorrelation functions and photon counting distributions

    No full text
    In fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis the same experimental fluorescence intensity fluctuations are used, but each analytical method focuses on a different property of the signal. The time-dependent decay of the correlation of fluorescence fluctuations is measured in FCS yielding, for instance, molecular diffusion coefficients. The amplitude distribution of these fluctuations is calculated by PCH yielding the molecular brightness. Both FCS and PCH give information about the molecular concentration. Here we describe a global analysis protocol that simultaneously recovers relevant and common parameters in model functions of FCS and PCH from a single fluorescence fluctuation trace. The global analysis approach is described and tested with experimental fluorescence fluctuation data of enhanced green-fluorescent protein (eGFP) and dimeric eGFP (two eGFP molecules connected by a six amino acid long linker) in aqueous buffer. Brightness values and diffusion constants are recovered with good precision elucidating novel excited-state and motional properties of both protein
    corecore