169 research outputs found

    Guidelines to use tomato in experiments with a controlled environment

    Get PDF
    Domesticated tomato (Solanum lycopersicum) is the most important horticultural crop worldwide. Low polymorphism at the DNA level conflicts with the wealth of morphological variation. Fruits vary widely in size, shape, and color. In contrast, genetic variation between the 16 wild relatives is tremendous. Several large seed banks provide tomato germplasm for both domesticated and wild accessions of tomato. Recently, the genomes of the inbred cultivar “Heinz 1706” (≈900 Mb), and S. pimpinellifolium (739 Mb) were sequenced. Genomic markers and genome re-sequencing data are available for >150 cultivars and accessions. Transformation of tomato is relatively easy and T-DNA insertion line collections are available. Tomato is widely used as a model crop for fruit development but also for diverse physiological, cellular, biochemical, molecular, and genetic studies. It can be easily grown in greenhouses or growth chambers. Plants grow, flower, and develop fruits well at daily light lengths between 8 and 16 h. The required daily light integral of an experiment depends on growth stage and temperature investigated. Temperature must be 10–35°C, relative humidity 30–90%, and, CO2 concentration 200–1500 ÎŒmol mol−1. Temperature determines the speed of the phenological development while daily light integral and CO2 concentration affect photosynthesis and biomass production. Seed to seed cultivation takes 100 days at 20°C and can be shortened or delayed by temperature. Tomato may be cultivated in soil, substrates, or aeroponically without any substrate. Root volume, and water uptake requirements are primarily determined by transpiration demands of the plants. Many nutrient supply recipes and strategies are available to ensure sufficient supply as well as specific nutrient deficits/surplus. Using appropriate cultivation techniques makes tomato a convenient model plant for researchers, even for beginners

    Soilless Tomato Production: Effects of Hemp Fiber and Rock Wool Growing Media on Yield, Secondary Metabolites, Substrate Characteristics and Greenhouse Gas Emissions

    Get PDF
    Replacement of rock wool by organic substrates is considered to reduce the environmental impact, e.g., through energy savings during production and waste prevention, caused by hydroponically produced crops. A suitable substrate for plant production is characterized by an optimal composition of air- and water-filled pores. In our study, we used hemp fibers as an organic alternative to rock wool in order to cultivate tomato plants in hydroponics for 36 weeks. The leaf area, plant length, and yields, as well as the quality of fruits including soluble solid contents, dry weight content, mineral composition, and contents of phenolic compounds caused by both substrates, were similar. Carotenoids were significantly increased in fruits from plants grown in hemp at some measuring dates. Nevertheless, higher emission rates of greenhouse gases such as N2O, CO2, and CH4 caused by hemp fiber compared to those emitted by rock wool during use are rather disadvantageous for the environment. While hemp proved to be a suitable substrate in terms of some physical properties (total pore volume, bulk density), a lower volume of air and easily available water as well as very rapid microbial decomposition and the associated high nitrogen immobilization must be considered as disadvantages.Peer Reviewe

    Type-I Prenyl Protease Function Is Required in the Male Germline of Drosophila melanogaster

    Get PDF
    Many proteins require the addition of a hydrophobic prenyl anchor (prenylation) for proper trafficking and localization in the cell. Prenyl proteases play critical roles in modifying proteins for membrane anchorage. The type I prenyl protease has a defined function in yeast (Ste24p/Afc1p) where it modifies a mating pheromone, and in humans (Zmpste24) where it has been implicated in a disease of premature aging. Despite these apparently very different biological processes, the type I prenyl protease gene is highly conserved, encoded by a single gene in a wide range of animal and plant groups. A notable exception is Drosophila melanogaster, where the gene encoding the type I prenyl protease has undergone an unprecedented series of duplications in the genome, resulting in five distinct paralogs, three of which are organized in a tandem array, and demonstrate high conservation, particularly in the vicinity of the active site of the enzyme. We have undertaken targeted deletion to remove the three tandem paralogs from the genome. The result is a male fertility defect, manifesting late in spermatogenesis. Our results also show that the ancestral type I prenyl protease gene in Drosophila is under strong purifying selection, while the more recent replicates are evolving rapidly. Our rescue data support a role for the rapidly evolving tandem paralogs in the male germline. We propose that potential targets for the male-specific type I prenyl proteases include proteins involved in the very dramatic cytoskeletal remodeling events required for spermatid maturation

    Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)—study protocol for a randomized controlled trial

    Get PDF
    Background: Given the global increase in the aging population and age-related diseases, the promotion of healthy aging is one of the most crucial public health issues. This trial aims to contribute to the establishment of effective approaches to promote cognitive and brain health in older individuals with subjective cognitive decline (SCD). Presence of SCD is known to increase the risk of objective cognitive decline and progression to dementia due to Alzheimer’s disease. Therefore, it is our primary goal to determine whether spermidine supplementation has a positive impact on memory performance in this at-risk group, as compared with placebo. The secondary goal is to examine the effects of spermidine intake on other neuropsychological, behavioral, and physiological parameters. Methods: The SmartAge trial is a monocentric, randomized, double-blind, placebo-controlled phase IIb trial. The study will investigate 12 months of intervention with spermidine-based nutritional supplementation (target intervention) compared with 12months of placebo intake (control intervention). We plan to recruit 100 cognitively normal older individuals with SCD from memory clinics, neurologists and general practitioners in private practice, and the general population. Participants will be allocated to one of the two study arms using blockwise randomization stratified by age and sex with a 1:1 allocation ratio. The primary outcome is the change in memory performance between baseline and post-intervention visits (12 months after baseline). Secondary outcomes include the change in memory performance from baseline to follow-up assessment (18months after baseline), as well as changes in neurocognitive, behavioral, and physiological parameters (including blood and neuroimaging biomarkers), assessed at baseline and post-intervention. Discussion: The SmartAge trial aims to provide evidence of the impact of spermidine supplementation on memory performance in older individuals with SCD. In addition, we will identify possible neurophysiological mechanisms of action underlying the anticipated cognitive benefits. Overall, this trial will contribute to the establishment of nutrition intervention in the prevention of Alzheimer’s disease

    Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella

    Get PDF
    Background The full power of modern genetics has been applied to the study of speciation in only a small handful of genetic model species - all of which speciated allopatrically. Here we report the first large expressed sequence tag (EST) study of a candidate for ecological sympatric speciation, the apple maggot Rhagoletis pomonella, using massively parallel pyrosequencing on the Roche 454-FLX platform. To maximize transcript diversity we created and sequenced separate libraries from larvae, pupae, adult heads, and headless adult bodies. Results We obtained 239,531 sequences which assembled into 24,373 contigs. A total of 6810 unique protein coding genes were identified among the contigs and long singletons, corresponding to 48% of all known Drosophila melanogaster protein-coding genes. Their distribution across GO classes suggests that we have obtained a representative sample of the transcriptome. Among these sequences are many candidates for potential R. pomonella speciation genes (or barrier genes ) such as those controlling chemosensory and life-history timing processes. Furthermore, we identified important marker loci including more than 40,000 single nucleotide polymorphisms (SNPs) and over 100 microsatellites. An initial search for SNPs at which the apple and hawthorn host races differ suggested at least 75 loci warranting further work. We also determined that developmental expression differences remained even after normalization; transcripts expected to show different expression levels between larvae and pupae in D. melanogaster also did so in R. pomonella. Preliminary comparative analysis of transcript presences and absences revealed evidence of gene loss in Drosophila and gain in the higher dipteran clade Schizophora. Conclusions These data provide a much needed resource for exploring mechanisms of divergence in this important model for sympatric ecological speciation. Our description of ESTs from a substantial portion of the R. pomonella transcriptome will facilitate future functional studies of candidate genes for olfaction and diapause-related life history timing, and will enable large scale expression studies. Similarly, the identification of new SNP and microsatellite markers will facilitate future population and quantitative genetic studies of divergence between the apple and hawthorn-infesting host races

    Strategic School Improvement Fund: updated 12 September 2017

    Get PDF
    <p><b>Comparison of MRI (A and B) with histological findings (C).</b> The lateral tibia plateau region of the sham knee joint of animal #8958 showed no salience neither in the sagittal MRI-scan (A) through the lateral compartment of the knee nor in the coronal MRI-scan (B) and was therefore rated as unchanged. The scale bars for A and B were determined with the program RadiAnt DICOM viewer (see caption <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0165897#pone.0165897.g001" target="_blank">Fig 1</a>). In contrast to the MRI results, the histological safranin-o staining (C) showed a moderate degeneration (Little-score: 10.5 points) with a fissure (1) in the cartilage and detachment of the topmost layer of the cartilage tissue. The histological finding and the MRI result did not concur.</p

    Flavonoid, Nitrate and Glucosinolate Concentrations in Brassica Species Are Differentially Affected by Photosynthetically Active Radiation, Phosphate and Phosphite

    Get PDF
    We evaluated the effects of phosphate (Pi-deficiency: 0.1 mM; Pi-sufficiency: 0.5 mM), phosphite (low-Phi: 0.1 mM; medium-Phi: 0.5 mM; and high-Phi: 2.5 mM), and two mean daily photosynthetically active radiations (lower PAR: 22.2 mol ⋅ m-2 ⋅ d-1; higher PAR: 29.7 mol ⋅ m-2 ⋅ d-1), as well as their interactions, on flavonoid, nitrate and glucosinolate (GL) concentrations and growth characteristics in hydroponically grown Brassica campestris cv. Mibuna Early and Brassica juncea cv. Red Giant. As expected, higher PAR increased dry matter and contrariwise decreased number of leaves but only in B. campestris. Total flavonoid and individual flavonoid compounds increased with the higher PAR value in B. campestris. Pi-sufficiency resulted in a lower quercetin concentration in both species, the isorhamnetin and total flavonoid concentrations in B. campestris, and the cyanidin concentration in B. juncea, in comparison to Pi-deficiency. Similarly, Pi-sufficient plants exhibited lower GL concentration, especially alkyl-GLs in B. campestris and alkenyl-GLs and an aryl-GL in B. juncea. Pi did not affect the nitrate concentration in either species, and nor did Phi influence the flavonoid concentrations in either species. In B. campestris, medium Phi (0.5 mM) increased the 1-methoxyindol-3-ylmethyl GL concentration by 28.3%, as compared to that observed at low Phi. In B. juncea, high Phi level increased the but-3-enyl-GL concentration by 18.9%, in comparison to values recorded at medium Phi. B. campestris plants exposed to higher PAR increased total flavonoids concentration. In both Brassica species, higher PAR stimulated the alkyl-, alkenyl-, and indole-GLs. The interaction of lower PAR and increasing Phi significantly decreased flavonoid concentration in B. juncea, whereas increasing Phi at higher PAR increased such concentration in this species. The same combination reduced the concentration of 2-phenylethyl- and indol-3-ylmethyl-GL in B. juncea. The highest indol-3-ylmethyl-GL concentration was observed when Pi was deficient combined with medium Phi in B. juncea. Thus, PAR, Pi and Phi may modulate flavonoid, GL and nitrate concentrations in Brassica species, which may be a useful tool to improve the nutraceutical quality of these leafy vegetables if properly managed

    Effects of Spermidine Supplementation on Cognition and Biomarkers in Older Adults With Subjective Cognitive Decline : Decline A Randomized Clinical Trial

    Get PDF
    IMPORTANCE Developing interventions against age-related memory decline and for older adults experiencing neurodegenerative disease is one of the greatest challenges of our generation. Spermidine supplementation has shown beneficial effects on brain and cognitive health in animal models, and there has been preliminary evidence of memory improvement in individuals with subjective cognitive decline. OBJECTIVE To determine the effect of longer-term spermidine supplementation on memory performance and biomarkers in this at-risk group. DESIGN, SETTING, AND PARTICIPANTS This 12-month randomized, double-masked, placebocontrolled phase 2b trial (the SmartAge trial) was conducted between January 2017 and May 2020. The study was a monocenter trial carried out at an academic clinical research center in Germany. Eligible individuals were aged 60 to 90 years with subjective cognitive decline who were recruited from health care facilities as well as through advertisements in the general population. Data analysis was conducted between January and March 2021. INTERVENTIONS One hundred participants were randomly assigned (1:1 ratio) to 12 months of dietary supplementation with either a spermidine-rich dietary supplement extracted from wheat germ (O.9 mg spermidine/d) or placebo (microcrystalline cellulose). Eighty-nine participants (89%) successfully completed the trial intervention. MAIN OUTCOMES AND MEASURES Primary outcome was change in memory performance from baseline to 12-month postintervention assessment (intention-to-treat analysis), operationalized by mnemonic discrimination performance assessed by the Mnemonic Similarity Task. Secondary outcomes included additional neuropsychological, behavioral, and physiological parameters. Safety was assessed in all participants and exploratory per-protocol, as well as subgroup, analyses were performed. RESULTS A total of 100 participants (51 in the spermidine group and 49 in the placebo group) were included in the analysis (mean [SD] age, 69 [5] years; 49 female participants [49%]). Over 12 months, no significant changes were observed in mnemonic discrimination performance (between-group difference, -0.03; 95% CI, -0.11 to 0.05; P = .47) and secondary outcomes. Exploratory analyses indicated possible beneficial effects of the intervention on inflammation and verbal memory. Adverse events were balanced between groups. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, longer-term spermidine supplementation in participants with subjective cognitive decline did not modify memory and biomarkers compared with placebo. Exploratory analyses indicated possible beneficial effects on verbal memory and inflammation that need to be validated in future studies at higher dosage.Peer reviewe

    Professional practice changes in radiotherapy physics during the COVID-19 pandemic.

    Get PDF
    Background and purpose The COVID-19 pandemic has imposed changes in radiotherapy (RT) departments worldwide. Medical physicists (MPs) are key healthcare professionals in maintaining safe and effective RT. This study reports on MPs experience during the first pandemic peak and explores the consequences on their work. Methods A 39-question survey on changes in departmental and clinical practice and on the impact for the future was sent to the global MP community. A total of 433 responses were analysed by professional role and by country clustered on the daily infection numbers. Results The impact of COVID-19 was bigger in countries with high daily infection rate. The majority of MPs worked in alternation at home/on-site. Among practice changes, implementation and/or increased use of hypofractionation was the most common (47% of the respondents). Sixteen percent of respondents modified patient-specific quality assurance (QA), 21% reduced machine QA, and 25% moved machine QA to weekends/evenings. The perception of trust in leadership and team unity was reversed between management MPs (towards increased trust and unity) and clinical MPs (towards a decrease). Changes such as home-working and increased use of hypofractionation were welcomed. However, some MPs were concerned about pressure to keep negative changes (e.g. weekend work). Conclusion COVID-19 affected MPs through changes in practice and QA procedures but also in terms of trust in leadership and team unity. Some changes were welcomed but others caused worries for the future. This report forms the basis, from a medical physics perspective, to evaluate long-lasting changes within a multi-disciplinary setting
    • 

    corecore