46 research outputs found
Exploiting structure-activity relationships of QS-21 in the design and synthesis of streamlined saponin vaccine adjuvants
We report the design, synthesis, immunological evaluation, and
conformational analysis of new saponin variants as promising
vaccine adjuvants. These studies have provided expedient synthetic
access to streamlined adjuvant-active saponins and yielded molecularlevel
insights into saponin conformation that correlated with their
in vivo adjuvant activities
Microspheres-prime/rMVA-boost vaccination enhances humoral and cellular immune response in IFNAR(−/−) mice conferring protection against serotypes 1 and 4 of bluetongue virus
Bluetongue virus (BTV) is the causative agent of bluetongue disease (BT), which affects domestic and wild ruminants. At the present, 27 different serotypes have been documented. Vaccination has been demonstrated as one of the most effective methods to avoid viral dissemination. To overcome the drawbacks associated with the use of inactivated and attenuated vaccines we engineered a new recombinant BTV vaccine candidate based on proteins VP2, VP7, and NS1 of BTV-4 that were incorporated into avian reovirus muNS-Mi microspheres (MS-VP2/VP7/NS1) and recombinant modified vaccinia virus Ankara (rMVA). The combination of these two antigen delivery systems in a heterologous prime-boost vaccination strategy generated significant levels of neutralizing antibodies in IFNAR(−/−) mice. Furthermore, this immunization strategy increased the ratio of IgG2a/IgG1 in sera, indicating an induction of a Th1 response, and elicited a CD8 T cell response. Immunized mice were protected against lethal challenges with the homologous serotype 4 and the heterologous serotype 1 of BTV. All these results support the strategy based on microspheres in combination with rMVAs as a promising multiserotype vaccine candidate against BTVThis work was supported by grants from the Spanish Ministerio de Economía y Competitividad (AGL2011-23506, AGL-2014-57430-R and BFU2013-43513-R). Financial support from the Consellería de Cultura, Educación e Ordenación Universitaria (Centro singular de investigación de Galicia accreditation 2016–2019, ED431G/09) and the European Regional Development Fund (ERDF), is also gratefully acknowledgedS
The Ixodes ricinus salivary gland proteome during feeding and B. Afzelii infection: New avenues for an anti-tick vaccine
Introduction
Borrelia burgdorferi sensu lato, the causative agents of Lyme borreliosis, are transmitted by Ixodes ticks. Tick saliva proteins are instrumental for survival of both the vector and spirochete and have been investigated as targets for vaccine targeting the vector. In Europe, the main vector for Lyme borreliosis is Ixodes ricinus, which predominantly transmits Borrelia afzelii. We here investigated the differential production of I. ricinus tick saliva proteins in response to feeding and B. afzelii infection.
Method
Label-free Quantitative Proteomics and Progenesis QI software was used to identify, compare, and select tick salivary gland proteins differentially produced during tick feeding and in response to B. afzelii infection. Tick saliva proteins were selected for validation, recombinantly expressed and used in both mouse and guinea pig vaccination and tick-challenge studies.
Results
We identified 870 I. ricinus proteins from which 68 were overrepresented upon 24-hours of feeding and B. afzelii infection. Selected tick proteins were successfully validated by confirming their expression at the RNA and native protein level in independent tick pools. When used in a recombinant vaccine formulation, these tick proteins significantly reduced the post-engorgement weights of I. ricinus nymphs in two experimental animal models. Despite the reduced ability of ticks to feed on vaccinated animals, we observed efficient transmission of B. afzelii to the murine host.
Conclusion
Using quantitative proteomics, we identified differential protein production in I. ricinus salivary glands in response to B. afzelii infection and different feeding conditions. These results provide novel insights into the process of I. ricinus feeding and B. afzelii transmission and revealed novel candidates for an anti-tick vaccine
Oral vaccination stimulates neutrophil functionality and exerts protection in a Mycobacterium avium subsp. paratuberculosis infection model
[EN] Mycobacterium avium subsp. paratuberculosis (Map) causes paratuberculosis (PTB), a granulomatous enteritis in ruminants that exerts high economic impact on the dairy industry worldwide. Current vaccines have shown to be cost-effective against Map and in some cases confer beneficial non-specific effects against other pathogens suggesting the existence of trained immunity. Although Map infection is mainly transmitted by the fecal-oral route, oral vaccination has not been deeply studied. Therefore, the aim of this study was to compare the oral route with a set of mycobacterial and non-mycobacterial vaccines with a subcutaneously administered commercially available vaccine. Training effects on polymorphonuclear neutrophils (PMNs) and homologous and heterologous in vivo protection against Map were investigated in the rabbit infection model. Oral vaccination with inactivated or live vaccines was able to activate mucosal immunity as seen by elevation of serum IgA and the expression of IL4 in peripheral blood mononuclear cells (PBMCs). In addition, peripheral PMN phagocytosis against Map was enhanced by vaccination and extracellular trap release against Map and non-related pathogens was modified by both, vaccination and Map-challenge, indicating trained immunity. Finally, PBMCs from vaccinated animals stimulated in vitro with Map antigens showed a rapid innate activation cytokine profile. In conclusion, our data show that oral vaccination against PTB can stimulate neutrophil activity and both innate and adaptive immune responses that correlate with protectionSIThe research was funded by the Department of Economy, Sustainability and Environment of the Basque Government and by grant RTA 2017-00089-00-00 of the National Institute for Agronomic Research (INIA) to N.E. I.L.-A. and M.O. both held predoctoral fellowships from the DEI of the Basque Government. This research was also partly supported by the Agriculture Funding Consortium members Alberta Agriculture and Forestry and Alberta Milk (2018F019R) to J.D.B. CIC bioGUNE thanks the Ministry of Science and Innovation for the Severo Ochoa excellence award (SEV- 2016-0644). The authors thank Félix Blanco, Sergio Ayuso, and Fidel Goiri for animal care and handling and Ainara Badiola for technical support at NEIKER. We thank Joseba Garrido for critical reading of the manuscript. Also, thanks to the technical and human support provided by SGIker of the UPV/EHU and European Funding (ERDF and ESF) in the analysis of the expression of mRNAs with the Fluidigm BioMark HD Nanofluidic qPCR syste
Oral vaccination stimulates neutrophil functionality and exerts protection in a Mycobacterium avium subsp. paratuberculosis infection model
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) causes paratuberculosis (PTB), a granulomatous enteritis in ruminants that exerts high economic impact on the dairy industry worldwide. Current vaccines have shown to be cost-effective against Map and in some cases confer beneficial non-specific effects against other pathogens suggesting the existence of trained immunity. Although Map infection is mainly transmitted by the fecal-oral route, oral vaccination has not been deeply studied. Therefore, the aim of this study was to compare the oral route with a set of mycobacterial and non-mycobacterial vaccines with a subcutaneously administered commercially available vaccine. Training effects on polymorphonuclear neutrophils (PMNs) and homologous and heterologous in vivo protection against Map were investigated in the rabbit infection model. Oral vaccination with inactivated or live vaccines was able to activate mucosal immunity as seen by elevation of serum IgA and the expression of IL4 in peripheral blood mononuclear cells (PBMCs). In addition, peripheral PMN phagocytosis against Map was enhanced by vaccination and extracellular trap release against Map and non-related pathogens was modified by both, vaccination and Map-challenge, indicating trained immunity. Finally, PBMCs from vaccinated animals stimulated in vitro with Map antigens showed a rapid innate activation cytokine profile. In conclusion, our data show that oral vaccination against PTB can stimulate neutrophil activity and both innate and adaptive immune responses that correlate with protection.The research was funded by the Department of Economy, Sustainability and Environment of the Basque Government and by grant RTA 2017-00089-00-00 of the National Institute for Agronomic Research (INIA) to N.E. I.L.-A. and M.O. both held predoctoral fellowships from the DEI of the Basque Government. This research was also partly supported by the Agriculture Funding Consortium members Alberta Agriculture and Forestry and Alberta Milk (2018F019R) to J.D.B. CIC bioGUNE thanks the Ministry of Science and Innovation for the Severo Ochoa excellence award (SEV-2016-0644
Mitochondrial complex I dysfunction alters the balance of soluble and membrane-bound TNF during chronic experimental colitis
[EN]Inflammatory bowel disease (IBD) is a complex, chronic, relapsing and heterogeneous disease induced by environmental, genomic, microbial and immunological factors. MCJ is a mitochondrial protein that regulates the metabolic status of macrophages and their response to translocated bacteria. Previously, an acute murine model of DSS-induced colitis showed increased disease severity due to MCJ deficiency. Unexpectedly, we now show that MCJ-deficient mice have augmented tumor necrosis factor α converting enzyme (TACE) activity in the context of chronic inflammation. This adaptative change likely affects the balance between soluble and transmembrane TNF and supports the association of the soluble form and a milder phenotype. Interestingly, the general shifts in microbial composition previously observed during acute inflammation were absent in the chronic model of inflammation in MCJ-deficient mice. However, the lack of the mitochondrial protein resulted in increased alpha diversity and the reduction in critical microbial members associated with inflammation, such as Ruminococcus gnavus, which could be associated with TACE activity. These results provide evidence of the dynamic metabolic adaptation of the colon tissue to chronic inflammatory changes mediated by the control of mitochondrial function.S
Utilidad clínica del estudio genético en pacientes con miocardiopatía dilatada
[Abstract] Introduction and objectives: Dilated cardiomyopathy (DCM) is the most frequent cause of heart transplantation. The prevalence of familial disease can reach 50%. Our objective was to describe the genetic basis of DCM in a cohort with a high proportion of transplanted patients.
Methods: We included patients with DCM and genetic testing performed using next-generation sequencing (NGS) that included at least 80 genes. Clinical data, family history and genetic results were retrospectively analysed. When possible, assessment of first-degree relatives was carried out.
Results: Eighty-seven DCM patients and 308 relatives from 70 families were evaluated. Clinical prevalence of familial disease was 37% (32 patients). Forty-four percent of patients (38 patients) had required heart transplantation. A relevant variant was found in 43 patients (49%), 25 patients (29%) carried variants of unknown significance and in 19 patients (22%) the study was negative. Most genetic variants were found in sarcomeric genes and the yield of genetic testing was higher in patients with familial DCM.
Conclusions: The yield of genetic testing in our DCM cohort was high, reaching 69% in familial cases. Mutational spectrum was heterogeneous and the identification of the specific aetiology of the disease often provided prognostic information.[Resumen] Introducción y objetivos. La miocardiopatía dilatada (MCD) es la causa más frecuente de trasplante cardiaco. Se considera que es familiar hasta en el 50% de los casos. Nuestro objetivo es describir los resultados genéticos obtenidos en una cohorte de pacientes con MCD, de los cuales una elevada proporción había acabado en trasplante cardiaco.
Métodos. Se incluyeron pacientes con MCD a los que se realizó next-generation sequencing (NGS, «secuenciación de nueva generación») de al menos 80 genes relacionados con la enfermedad. Se analizaron retrospectivamente los datos clínicos de los pacientes, la historia familiar y los resultados del estudio genético. En los casos en los que fue posible, se realizó una evaluación de sus familiares de primer grado.
Resultados. Fueron evaluados 87 pacientes con MCD y 308 familiares de 70 familias distintas. La prevalencia clínica de enfermedad familiar fue del 37% (32 pacientes) y el 44% (38 pacientes) habían precisado un trasplante cardiaco. En 43 pacientes (49%) se encontró al menos una variante relevante, en 25 pacientes (29%) se identificaron variantes de significado incierto y en 19 pacientes (22%) el estudio fue negativo. La mayoría de las mutaciones se encontraron en genes sarcoméricos y la rentabilidad del estudio fue mayor en los pacientes con MCD familiar.
Conclusiones. El estudio genético NGS en nuestra población de pacientes con MCD tuvo una elevada rentabilidad, alcanzando el 69% en los casos familiares. El espectro mutacional fue heterogéneo y con frecuencia la identificación de la etiología específica de la enfermedad aportó información pronóstica
Prognostic Implications of Pathogenic Truncating Variants in the TTN Gene
[Abstract]
Introduction and objectives: TTN gene truncating variants (TTNtv) are a frequent cause of dilated cardiomyopathy
(DCM). However, there are discrepant data on the associated prognosis. Our objectives were to describe the prevalence of TTNtv in our cohort and to compare the clinical course with that described in the literature.
Methods: We included patients with DCM and genetic testing performed using next-generation sequencing.
Through a systematic literature research, we collected information about carriers and affected relatives with
TTNtv. We compared the cumulative percentage of affected carriers and the survival free of cardiovascular death.
Results: One hundred and ten DCM patients were evaluated. A total of 13 TTNtv distributed in 14 probands were
identified (12.7%). We found a 21.4% prevalence in familial cases. No significant differences in the relation between age and clinical disease expression were identified. Survival free of cardiovascular death curves constructed from data in the literature seems not to overestimate the risk in our population.
Conclusions: The identification of TTNtv in patients with DCM is frequent and provides relevant information about
the disease prognosis. The risk of cardiovascular death should not be underestimated. Age related penetrance
need to be considered in the familial evaluation
Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals
Background and aims: Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models.
Approach and results: Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations.
Conclusions: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.Funding information: Supported by grants from Ministerio de Ciencia, Innovación y Universidades
MICINN (PID2020-117116RB-100, RTI2018-096759-A-100, RTI2018-095114-B-I00, PID2019-108977RB-100 and RTI2018-095700-B100, integrado en el Plan Estatal de Investigación Científica y Técnica y Innovación, cofinanciado con
Fondos FEDER, to M.L.M.-C., T.C.D., C.P., P.M.-S., and N.G.A.A., respectively), Subprograma Retos Colaboración RTC2019-007125-1; Fundación Científica de la Asociación Española Contra el
Cáncer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M.-C.); Asociación Española contra el Cáncer (to T.C.D. and M.S.-M); La Caixa
Foundation Program (HR17-00601, to M.L.M.-C.), Proyectos Investigación en Salud DTS20/00138 (to M.L.M.-C.); Departamento de Industria del Gobierno Vasco (to M.L.M.-C.); Departamento de
Educación del Gobierno Vasco (to N.G.-U. and J.S.); Acción Estratégica Ciber Emergentes 2018 (Ciberehd-ISCIII) and Gilead Sciences International Research Scholars Program in Liver Disease (to
M.V.-R.); Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos IIIAcknowledgments: We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644). We acknowledge Begoña Rodríguez Iruretagoyena for the technical support provided
Mitochondrial complex I dysfunction alters the balance of soluble and membrane-bound TNF during chronic experimental colitis.
Inflammatory bowel disease (IBD) is a complex, chronic, relapsing and heterogeneous disease induced by environmental, genomic, microbial and immunological factors. MCJ is a mitochondrial protein that regulates the metabolic status of macrophages and their response to translocated bacteria. Previously, an acute murine model of DSS-induced colitis showed increased disease severity due to MCJ deficiency. Unexpectedly, we now show that MCJ-deficient mice have augmented tumor necrosis factor alpha converting enzyme (TACE) activity in the context of chronic inflammation. This adaptative change likely affects the balance between soluble and transmembrane TNF and supports the association of the soluble form and a milder phenotype. Interestingly, the general shifts in microbial composition previously observed during acute inflammation were absent in the chronic model of inflammation in MCJ-deficient mice. However, the lack of the mitochondrial protein resulted in increased alpha diversity and the reduction in critical microbial members associated with inflammation, such as Ruminococcus gnavus, which could be associated with TACE activity. These results provide evidence of the dynamic metabolic adaptation of the colon tissue to chronic inflammatory changes mediated by the control of mitochondrial function