9 research outputs found

    Establishment and effects of allograft and synthetic bone graft substitute treatment of a critical size metaphyseal bone defect model in the sheep femur

    No full text
    Assessment of bone graft material efficacy is difficult in humans, since invasive methods like staged CT scans or biopsies are ethically unjustifiable. Therefore, we developed a novel large animal model for the verification of a potential transformation of synthetic bone graft substitutes into vital bone. The model combines multiple imaging methods with corresponding histology in standardized critical sized cancellous bone defect. Cylindrical bone voids (10 ml) were created in the medial femoral condyles of both hind legs (first surgery at right hind leg, second surgery 3 months later at left hind leg) in three merino-wool sheep and either (i) left empty, filled with (ii) cancellous allograft bone or (iii) a synthetic, gentamicin eluting bone graft substitute. All samples were analysed with radiographs, MRI, μCT, DEXA and histology after sacrifice at 6 months. Unfilled defects only showed ingrowth of fibrous tissue, whereas good integration of the cancellous graft was seen in the allograft group. The bone graft substitute showed centripetal biodegradation and new trabecular bone formation in the periphery of the void as early as 3 months. μCT gave excellent insight into the structural changes within the defects, particularly progressive allograft incorporation and the bone graft substitute biodegradation process. MRI completed the picture by clearly visualizing soft tissue ingrowth into unfilled bone voids and presence of fluid collections. Histology was essential for verification of trabecular bone and osteoid formation. Conventional radiographs and DEXA could not differentiate details of the ongoing transformation process. This model appears well suited for detailed in vivo and ex vivo evaluation of bone graft substitute behaviour within large bone defects.</p

    Bactericidal and Biocompatible Properties of Plasma Chemical Oxidized Titanium (TiOB®) with Antimicrobial Surface Functionalization

    No full text
    Coating of plasma chemical oxidized titanium (TiOB&reg;) with gentamicin-tannic acid (TiOB&reg; gta) has proven to be efficient in preventing bacterial colonization of implants. However, in times of increasing antibiotic resistance, the development of alternative antimicrobial functionalization strategies is of major interest. Therefore, the aim of the present study is to evaluate the antibacterial and biocompatible properties of TiOB&reg; functionalized with silver nanoparticles (TiOB&reg; SiOx Ag) and ionic zinc (TiOB&reg; Zn). Antibacterial efficiency was determined by agar diffusion and proliferation test on Staphylocuccus aureus. Cytocompatibility was analyzed by direct cultivation of MC3T3-E1 cells on top of the functionalized surfaces for 2 and 4 d. All functionalized surfaces showed significant bactericidal effects expressed by extended lag phases (TiOB&reg; gta for 5 h, TiOB&reg; SiOx Ag for 8 h, TiOB&reg; Zn for 10 h). While TiOB&reg; gta (positive control) and TiOB&reg; Zn remained bactericidal for 48 h, TiOB&reg; SiOx Ag was active for only 4 h. After direct cultivation for 4 d, viable MC3T3-E1 cells were found on all surfaces tested with the highest biocompatibility recorded for TiOB&reg; SiOx Ag. The present study revealed that functionalization of TiOB&reg; with ionic zinc shows bactericidal properties that are comparable to those of a gentamicin-containing coating

    Postembedding Decalcification of Mineralized Tissue Sections Preserves the Integrity of Implanted Biomaterials and Minimizes Number of Experimental Animals

    Get PDF
    Bone histology of decalcified or undecalcified samples depends on the investigation. However, in research each method provides different information to answer the scientific question. Decalcification is the first step after sample fixation and governs what analysis is later feasible on the sections. Besides, decalcification is favored for immunostaining and in situ hybridization. Otherwise, sample decalcification can be damaging to bone biomaterials implants that contains calcium or strontium. On the other hand, after decalcification mineralization cannot be assessed using histology or imaging mass spectrometry. The current study provides a solution to the hardship caused by material presence within the bone tissue. The protocol presents a possibility of gaining sequential and alternating decalcified and undecalcified sections from the same bone sample. In this manner, investigations using histology, protein signaling, in situ hybridization, and mass spectrometry on the same sample can better answer the intended research question. Indeed, decalcification of sections and grindings resulted in well-preserved sample and biomaterials integrity. Immunostaining was comparable to that of classically decalcified samples. The study offers a novel approach that incites correlative analysis on the same sample and reduces the number of processed samples whether clinical biopsies or experimental animals
    corecore