857 research outputs found

    Using LiDAR to Link Forest Canopy Structure with Bat Activity and Insect Occurrence: Preliminary Findings

    Get PDF
    Bats are an imperiled, yet ecologically-important group of vertebrate predators. Our ongoing research focuses on testing hypotheses about the relationships between the effects of fire on canopy structure and insect prey availability, and how these factors relate to use of foraging space by bats during the pre- and post-hibernation periods at Mammoth Cave National Park (MCNP). LiDAR-derived data (October 2010) were intersected with spatially explicit sampling of bat and insect populations (2010-2011) in order to characterize relationships between canopy structure, insect abundance, and bat activity. A canonical correspondence analysis for bat data suggested that forest canopy structure has a strong relationship with bat activity, particularly for species that echolocate at higher frequencies. Less variation was accounted for in a canonical correspondence analysis of insect occurrence. Even so, this analysis still demonstrated that variation in forest canopy structure influences the insect community at MCNP, albeit in varied ways for specific orders of insects

    NICMOS Imaging of the Host Galaxies of z ~ 2 - 3 Radio-Quiet Quasars

    Get PDF
    We have made a deep NICMOS imaging study of a sample of 5 z ~ 2 - 3 radio-quiet quasars with low absolute nuclear luminosities, and we have detected apparent host galaxies in all of these. Most of the hosts have luminosities approximately equal to present-day L*, with a range from 0.2 L* to about 4 L*. These host galaxies have magnitudes and sizes consistent with those of the Lyman break galaxies at similar redshifts and at similar rest wavelengths, but are about two magnitudes fainter than high-z powerful radio galaxies. The hosts of our high-z sample are comparable to or less luminous than the hosts of the low-z RQQs with similar nuclear absolute magnitudes. However, the high z galaxies are more compact than the hosts of the low z quasars, and probably have only 10 - 20% of the stellar mass of their low-z counterparts. Application of the M(bulge)/M(BH) relation found for present-day spheroids to the stellar masses implied for the high z host galaxies would indicate that they contain black holes with masses around 10^8 Msolar. Comparison to their nuclear magnitudes implies accretion rates that are near or at the Eddington limit. Although these high z hosts already contain supermassive black holes, the galaxies will need to grow significantly to evolve into present-day L* galaxies. These results are basically consistent with theoretical predictions for the hierarchical buildup of the galaxy host and its relation to the central supermassive black hole.Comment: 25 pages, 13 figures, accepted for publication in Ap

    Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect

    Get PDF
    Climate change is affecting biodiversity, but proximate drivers remain poorly understood. Here, we examine how experimental heatwaves impact on reproduction in an insect system. Male sensitivity to heat is recognised in endotherms, but ectotherms have received limited attention, despite comprising most of biodiversity and being more influenced by temperature variation. Using a flour beetle model system, we find that heatwave conditions (5 to 7 °C above optimum for 5 days) damaged male, but not female, reproduction. Heatwaves reduce male fertility and sperm competitiveness, and successive heatwaves almost sterilise males. Heatwaves reduce sperm production, viability, and migration through the female. Inseminated sperm in female storage are also damaged by heatwaves. Finally, we discover transgenerational impacts, with reduced reproductive potential and lifespan of offspring when fathered by males, or sperm, that had experienced heatwaves. This male reproductive damage under heatwave conditions provides one potential driver behind biodiversity declines and contractions through global warming

    Three members of a peptide family are differentially distributed and elicit differential state-dependent responses in a pattern generator-effector system

    Get PDF
    C-type allatostatins (AST-Cs) are pleiotropic neuropeptides that are broadly conserved within arthropods; the presence of three AST-C isoforms, encoded by paralog genes, is common. However, these peptides are hypothesized to act through a single receptor, thereby exerting similar bioactivities within each species. We investigated this hypothesis in the American lobster, Homarus americanus, mapping the distributions of AST-C isoforms within relevant regions of the nervous system and digestive tract, and comparing their modulatory influences on the cardiac neuromuscular system. Immunohistochemistry showed that in the pericardial organ, a neuroendocrine release site, AST-C I and/or III and AST-C II are contained within distinct populations of release terminals. Moreover, AST-C I/III-like immunoreactivity was seen in midgut epithelial endocrine cells and the cardiac ganglion (CG), whereas AST-C II-like immunoreactivity was not seen in these tissues. These data suggest that AST-C I and/or III can modulate the CG both locally and hormonally; AST-C II likely acts on the CG solely as a hormonal modulator. Physiological studies demonstrated that all three AST-C isoforms can exert differential effects, including both increases and decreases, on contraction amplitude and frequency when perfused through the heart. However, in contrast to many state-dependent modulatory changes, the changes in contraction amplitude and frequency elicited by the AST-Cs were not functions of the baseline parameters. The responses to AST-C I and III, neither of which is COOH-terminally amidated, are more similar to one another than they are to the responses elicited by AST-C II, which is COOH-terminally amidated. These results suggest that the three AST-C isoforms are differentially distributed in the lobster nervous system/midgut and can elicit distinct behaviors from the cardiac neuromuscular system, with particular structural features, e.g., COOH-terminal amidation, likely important in determining the effects of the peptides. NEW & NOTEWORTHY Multiple isoforms of many peptides exert similar effects on neural circuits. In this study we show that each of the three isoforms of C-type allatostatin (AST-C) can exert differential effects, including both increases and decreases in contraction amplitude and frequency, on the lobster cardiac neuromuscular system. The distribution of effects elicited by the nonamidated isoforms AST-C I and III are more similar to one another than to the effects of the amidated AST-C II

    'Candidatus Phytoplasma malaysianum', a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus).

    Get PDF
    This study addressed the taxonomic position and group classification of a phytoplasma responsible for virescence and phyllody symptoms in naturally diseased Madagascar periwinkle plants in western Malaysia. Unique regions in the 16S rRNA gene from the Malaysian periwinkle virescence (MaPV) phytoplasma distinguished the phytoplasma from all previously described 'Candidatus Phytoplasma' species. Pairwise sequence similarity scores, calculated through alignment of full-length 16S rRNA gene sequences, revealed that the MaPV phytoplasma 16S rRNA gene shared 96.5 % or less sequence similarity with that of previously described 'Ca. Phytoplasma' species, justifying the recognition of the MaPV phytoplasma as a reference strain of a novel taxon, 'Candidatus Phytoplasma malaysianum'. The 16S rRNA gene F2nR2 fragment from the MaPV phytoplasma exhibited a distinct restriction fragment length polymorphism (RFLP) profile and the pattern similarity coefficient values were lower than 0.85 with representative phytoplasmas classified in any of the 31 previously delineated 16Sr groups; therefore, the MaPV phytoplasma was designated a member of a new 16Sr group, 16SrXXXII. Phytoplasmas affiliated with this novel taxon and the new group included diverse strains infecting periwinkle, coconut palm and oil palm in Malaysia. Three phytoplasmas were characterized as representatives of three distinct subgroups, 16SrXXXII-A, 16SrXXXII-B and 16SrXXXII-C, respectively

    Prediction of a neuropeptidome for the eyestalk ganglia of the lobster Homarus americanus using a tissue-specific de novo assembled transcriptome

    Get PDF
    In silico transcriptome mining is a powerful tool for crustacean peptidome prediction. Using homology-based BLAST searches and a simple bioinformatics workflow, large peptidomes have recently been predicted for a variety of crustaceans, including the lobster, Homarus americanus. Interestingly, no in silico studies have been conducted on the eyestalk ganglia (lamina ganglionaris, medulla externa, medulla interna and medulla terminalis) of the lobster, although the eyestalk is the location of a major neuroendocrine complex, i.e., the X-organ-sinus gland system. Here, an H. americanus eyestalk ganglia-specific transcriptome was produced using the de novo assembler Trinity. This transcriptome was generated from 130,973,220 Illumina reads and consists of 147,542 unique contigs. Eighty-nine neuropeptide-encoding transcripts were identified from this dataset, allowing for the deduction of 62 distinct pre/preprohormones. Two hundred sixty-two neuropeptides were predicted from this set of precursors; the peptides include members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon α, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptide, diuretic hormone 31, diuretic hormone 44, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone α2, glycoprotein hormone β5, GSEFLamide, intocin, leucokinin, molt-inhibiting hormone, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pigment dispersing hormone, proctolin, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide, sulfakinin, tachykinin-related peptide and trissin families. The predicted peptides expand the H. americanus eyestalk ganglia neuropeptidome approximately 7-fold, and include 78 peptides new to the lobster. The transcriptome and predicted neuropeptidome described here provide new resources for investigating peptidergic signaling within/from the lobster eyestalk ganglia

    'Candidatus phytoplasma palmicola’: a novel taxon associated with a lethal yellowing-type disease (LYD) of coconut ( Cocos nucifera L.) in Mozambique

    Get PDF
    In this study, the taxonomic position and group classification of the phytoplasma associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique were addressed. Pairwise sequence similarity values based on alignment of near full-length 16SrRNA genes (1530 bp) revealed that the Mozambique coconut phytoplasma (LYDM) shared 100% identity with a comparable sequence derived from a phytoplasma strain (LDN), responsible for Awka wilt disease of coconut in Nigeria, and shared 99-99.6% identity with 16S rRNA sequences from strains associated with Cape St. Paul wilt (CSPW) disease of coconut in Ghana and Côte d'Ivoire. Similarity scores further determined the 16S rRNA gene of LYDM phytoplasma to share <97.5% sequence identity with all prior descriptions of ‘Ca. Phytoplasma’ species. Presence of unique regions in the 16S rRNA distinguished LYDM phytoplasma from all currently described ‘Candidatus Phytoplasma’ species, justifying its recognition as reference strain of a novel taxon, ‘Candidatus Phytoplasma palmicola’. Restriction fragment length polymorphism (RFLP) profiles of the F2n/R2 portion (1251 bp) of the 16S rRNA gene and pattern similarity coefficient values delineated coconut LYDM phytoplasma strains from Mozambique as new members of established group 16SrXXII, subgroup A (16SrXXII-A). Similarity coefficients of 0.97 were obtained for comparisons between subgroup 16SrXXII-A strains and CSPW phytoplasmas from Ghana and Côte d'Ivoire. On this basis, CSPW phytoplasma strains were designated as members of a new subgroup, 16SrXXII-B

    The C-Band All-Sky Survey: Instrument design, status, and first-look data

    Get PDF
    The C-Band All-Sky Survey (C-BASS) aims to produce sensitive, all-sky maps of diffuse Galactic emission at 5 GHz in total intensity and linear polarization. These maps will be used (with other surveys) to separate the several astrophysical components contributing to microwave emission, and in particular will allow an accurate map of synchrotron emission to be produced for the subtraction of foregrounds from measurements of the polarized Cosmic Microwave Background. We describe the design of the analog instrument, the optics of our 6.1 m dish at the Owens Valley Radio Observatory, the status of observations, and first-look data.Comment: 10 pages, 11 figures, published in Proceedings of SPIE MIllimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (2010), Vol. 7741, 77411I-1 - 77411I-1

    The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4<z<74 < z < 7 in the CANDELS GOODS-South field

    Get PDF
    We measure new estimates for the galaxy stellar mass function and star formation rates for samples of galaxies at z4, 5, 6 & 7z \sim 4,~5,~6~\&~7 using data in the CANDELS GOODS South field. The deep near-infrared observations allow us to construct the stellar mass function at z6z \geq 6 directly for the first time. We estimate stellar masses for our sample by fitting the observed spectral energy distributions with synthetic stellar populations, including nebular line and continuum emission. The observed UV luminosity functions for the samples are consistent with previous observations, however we find that the observed MUVM_{UV} - M_{*} relation has a shallow slope more consistent with a constant mass to light ratio and a normalisation which evolves with redshift. Our stellar mass functions have steep low-mass slopes (α1.9\alpha \approx -1.9), steeper than previously observed at these redshifts and closer to that of the UV luminosity function. Integrating our new mass functions, we find the observed stellar mass density evolves from log10ρ=6.640.89+0.58\log_{10} \rho_{*} = 6.64^{+0.58}_{-0.89} at z7z \sim 7 to 7.36±0.067.36\pm0.06 MMpc3\text{M}_{\odot} \text{Mpc}^{-3} at z4z \sim 4. Finally, combining the measured UV continuum slopes (β\beta) with their rest-frame UV luminosities, we calculate dust corrected star-formation rates (SFR) for our sample. We find the specific star-formation rate for a fixed stellar mass increases with redshift whilst the global SFR density falls rapidly over this period. Our new SFR density estimates are higher than previously observed at this redshift.Comment: 28 pages, 23 figures, 2 appendices. Accepted for publication in MNRAS, August 7 201

    Sexual selection protects against extinction

    Get PDF
    Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring1. It has been theorized that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load2,3,4. Under sexual selection, competition between (usually) males and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which is contingent to mutation load, then sexually selected filtering through ‘genic capture’5 could offset the costs of sex because it provides genetic benefits to populations. Here we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for 6 to 7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress.We thank the Natural Environment Research Council and the Leverhulme Trust for financial support, D. Edward for statistical advice and colleagues at the 2013 Biology of Sperm meeting for comments that improved analytical design and interpretation.Peer reviewedPeer Reviewe
    corecore