310 research outputs found

    Reciprocal Ovary Transplantation as a Means to Study Reproductive Function in Female Lethal Yellow Mice (A̲y̲/a̲: C57BL/6J)

    Get PDF
    The first study was conducted to determine whether the previously observed reproductive failures in aging obese lethal yellow (AY/a) females are due primarily to: (1) intrinsic defects within AY/a ovaries or (2) systemic defects extrinsic to AY/a ovaries such as sites within the hypothalamus or pituitary gland. A second experiment was conducted to assess uterine capacity in AY/a females. In order to accurately measure uterine capacity in AY/a females, it was necessary to separate uterine effects from embryo (AY/a) effects. Thus by conducting the appropriate ovary transplantations, one could test uterine capacity in AY/a females in the absence of AY/a embryos. This study was conducted to determine whether reproductive failures in aging, obese lethal yellow (AYjg) females are due primarily to defects within AYjg ovaries or to systemic defects which may operate outside the ovaries. Reciprocal ovary transplantation between control (g/a) and lethal yellow (AYjg) females provided an experimental system to test the reproductive potential not only of AYja ovaries in control (g/g) females but also of control {g/g) ovaries in mutant females. Results on reproductive performance of all four combinations of grafts between AY/a and a/a mice proved that AY- induced reproductive failures are not due to intrinsic ovarian lesions but rather to defects operating extrinsically to the ovary. The hypothalamo-pituitary axis is a likely site for this reproductive lesion

    Rare earth element deposition in pelagic sediment at the Cenomanian‐Turonian Boundary, Exmouth Plateau

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95314/1/grl8050.pd

    Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section)

    Get PDF
    We present records of stable carbon and oxygen isotopes, CaCO3 content, and changes in calcareous nannofossil assemblages across an 81 m thick section of upper Paleocene lower Eocene marine sedimentary rocks now exposed along the Cicogna Stream in northeast Italy. The studied stratigraphic section represents sediment accumulation in a bathyal hemipelagic setting from approximately 57.5 to 52.2 Ma, a multi-million-year time interval characterized by perturbations in the global carbon cycle and changes in calcareous nannofossil assemblages. The bulk carbonate delta C-13 profile for the Cicogna section, once placed on a common timescale, resembles that at several other locations across the world, and includes both a long-term drop in delta C-13 and multiple short-term carbon isotope excursions (CIEs). This precise correlation of widely separated delta C-13 records in marine sequences results from temporal changes in the carbon composition of the exogenic carbon cycle. However, diagenesis has likely modified the delta C-13 record at Cicogna, an interpretation supported by variations in bulk carbonate 8180, which do not conform to expectations for a primary signal. The record of CaCO3 content reflects a combination of carbonate dilution and dissolution, as also inferred at other sites. Our detailed documentation and statistical analysis of calcareous nannofossil assemblages show major differences before, during and after the Paleocene Eocene Thermal Maximum. Other CIEs in our lower Paleogene section do not exhibit such a distinctive change;instead, these events are sometimes characterized by variations restricted to a limited number of taxa and transient shifts in the relative abundance of primary assemblage components. Both long-lasting and short-lived modifications to calcareous nannofossil assemblages preferentially affected nannoliths or holococcoliths such as Discoaster,, Fasciculithus, Rhomboaster/Tribrachiatus, Sphenolithus and Zygrhablithus, which underwent distinct variations in abundance as well as permanent evolutionary changes in terms of appearances and disappearances. By contrast, placoliths such as Coccolithus and Tow eius, which represent the main component of the assemblages, were characterized by a gradual decline in abundance over time. Comparisons of detailed nannofossil assemblage records at the Cicogna section and at ODP Site 1262 support the idea that variations in the relative and absolute abundances, even some minor changes, were globally synchronous. An obvious link is through climate forcing and carbon cycling, although the linkages between variations in calcareous nannoplankton, changes in delta C-13 records and oceanography will need additional work

    Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations

    Get PDF
    Continental slopes north of the East Siberian Sea potentially hold large amounts of methane (CH4) in sediments as gas hydrate and free gas. Although release of this CH4 to the ocean and atmosphere has become a topic of discussion, the region remains sparingly explored. Here we present pore water chemistry results from 32 sediment cores taken during Leg 2 of the 2014 joint Swedish–Russian–US Arctic Ocean Investigation of Climate–Cryosphere–Carbon Interactions (SWERUS-C3) expedition. The cores come from depth transects across the slope and rise extending between the Mendeleev and the Lomonosov ridges, north of Wrangel Island and the New Siberian Islands, respectively. Upward CH4 flux towards the seafloor, as inferred from profiles of dissolved sulfate (SO42−), alkalinity, and the δ13C of dissolved inorganic carbon (DIC), is negligible at all stations east of 143° E longitude. In the upper 8 m of these cores, downward SO42− flux never exceeds 6.2 mol m−2 kyr−1, the upward alkalinity flux never exceeds 6.8 mol m−2 kyr−1, and δ13C composition of DIC (δ13C-DIC) only moderately decreases with depth (−3.6 ‰ m−1 on average). Moreover, upon addition of Zn acetate to pore water samples, ZnS did not precipitate, indicating a lack of dissolved H2S. Phosphate, ammonium, and metal profiles reveal that metal oxide reduction by organic carbon dominates the geochemical environment and supports very low organic carbon turnover rates. A single core on the Lomonosov Ridge differs, as diffusive fluxes for SO42− and alkalinity were 13.9 and 11.3 mol m−2 kyr−1, respectively, the δ13C-DIC gradient was 5.6 ‰ m−1, and Mn2+ reduction terminated within 1.3 m of the seafloor. These are among the first pore water results generated from this vast climatically sensitive region, and they imply that abundant CH4, including gas hydrates, do not characterize the East Siberian Sea slope or rise along the investigated depth transects. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based on assumption

    Detection and Production of Methane Hydrate

    Get PDF
    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation

    Did Photosymbiont Bleaching Lead to the Demise of Planktic Foraminifer Morozovella at the Early Eocene Climatic Optimum?

    Get PDF
    The symbiont-bearing mixed-layer planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of early Paleogene tropical–subtropical oceans. A marked and permanent switch in the abundance of these genera is known to have occurred at low-latitude sites at the beginning of the Early Eocene Climatic Optimum(EECO), such that the relative abundance of Morozovella permanently and significantly decreased along with a progressive reduction in the number of species; concomitantly, the genus Acarinina almost doubled its abundance and diversified. Here we examine planktic foraminiferal assemblages and stable isotope compositions of their tests at Ocean Drilling Program Site 1051 (northwest Atlantic) to detail the timing of this biotic event, to document its details at the species level, and to test a potential cause: the loss of photosymbionts (bleaching). We also provide stable isotope measurements of bulk carbonate to refine the stratigraphy at Site 1051 and to determine when changes in Morozovella species composition and their test size occurred. We demonstrate that the switch in Morozovella and Acarinina abundance occurred rapidly and in coincidence with a negative carbon isotope excursion known as the J event (~53 Ma), which marks the start of the EECO.We provide evidence of photosymbiont loss after the J event from a size-restricted δ13C analysis. However, such inferred bleaching was transitory and also occurred in the acarininids. The geologically rapid switch in planktic foraminiferal genera during the early Eocene was a major evolutionary change within marine biota, but loss of photosymbionts was not the primary causal mechanism
    corecore