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. INTRODUCTION 

The l ethal yel low gene (A� )  located at the agout i locus 

( chromosome 2 )  in the house mouse 

number o f  phenotypic abnormal it ies . 

( Mus musculus ) causes a 

Homozygosity o f  the AY 

a ll el e  results in death o f  the embryo in utero around the 

t ime o f  implantation ( Eaton , 1 9 6 8 ) . For this reason A� is 

cal led the lethal yel low gene . However , the hetero zygote 

(AYjg) is viable but shows a number of phenotypic 

abnorma l ities . Among these abnormal ities is reproductive 

failure in females . Thi s  reproductive senescence of AYjg_ 

females is the primary focus o f  this thes is . 

The mammal ian reproductive system departs furthest from 

that o f  the primit ive vertebrates . Primitive , ancestral 

vertebrates were presumably egg-layers , and this style of 

reproduction is fairly typ ical of a l l  clas ses of vertebrates 

except the mammals . Al l mammal ian spec ies with the 

except ion o f  prototherians possess a uterus , nourish the ir 

young with mi l k ,  and care for their young . Relatively few 

young are produced , but the l ikel ihood for survival i s  

fa irly high . The fol l owing paragraph brie fly desciribes the 

highly success ful reproduct ive system o f  the female mammal . 

Reproduction is characteri z ed by a series o f  cyc l i c  

events that are under nervous and hormonal control . The 

re�ulation of the reproduct ive cycl e is ma intained through 

rec iprocal contro ls between endocrine organs and the ir 
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secret i ons . Female reproductive organs cons ist . of  ovaries , 

fal l opian tubes , uterus , and vagina . The reproduct ion 

cycl e ,  termed the menstrual cyc l e , can be thought of as 

beginning with the devel opment of fol l icles in the ovaries . 

Thi s  development depends directly upon the estrogen produced 

by the foll icle , and upon two hormones secreted by the 

anterior pituitary , fol l icle stimulating hormone ( FSH) and 

luteiniz ing hormone (LH) . S ecret ion of  FSH and LH i s  

stimulated by the secret ion o f  gonadotrophin releas ing 

hormone ( GnRH ) by the hyp othal amus . In turn the 

hypothalamus is controlled by a negat ive feedback system via 

estrogen and progesterone from the ovaries . As with any 

comp l ex biolog ical system , there are numerous opportunities 

for things to go �rong . Somewhere in this complex neural 

and endocrine system , the lethal yel low gene causes one or 

more mal funct ions result ing in reproduct ive senescence . 

There are a number o f  t is sue candidates for the 

spec i fic AY - directed mal function . A hypothalamic andjor 

pitu itary les ion seems probable , 

organs for other obese rodent 

s ince they are the target 

syndromes ( e . · .g., ob/ ob , 

db/db , and fa/ fa ) . However ,  unl ike other rodent syndromes , 

the yel low mouse seems to have a progress ive rather than a 

sharply de f ined infert i l ity .  The progres sive infertil ity in 

AYj a mice seems to be related to fat deposition . Therefore , 

a fundamenta l question is whether there exi sts a primary AY 

hypothalamic les ion caus ing the reproductive failures , or 
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whether fat depos ition or fat metabol ism is the more primary 

les ion which secondari ly a f fects hypothalamo-p ituitary 

funct ion . 

I n  addition to caus ing infert i l ity in females , AY 

induces a number of otheJ; phenotyp ic phenomena that may be 

of cons iderable interest to b iomedical science . S ome of  

these phenomena include : 

1 .  Implantation failure . Implantat ion is a particularly 

sens itive time in the reproduction of a l l  mamma l s . 

Johnson and Everitt ( 1 9 8 4 ) report that 4 0  - 5 0 %  o f  all 

spontaneous abortions are due to cervical incompetence 

or impl antation in eccentric uterine pos it ions . AYfg 

and gja dams together with their lethal yel l ow ( AYja ) 

and control progeny (gja ) , -provide a wel l -contro lled 

and productive system to investigate prerequ i s ites for 

mammal ian implantation . 

2 .  Unique nutritional pathways that channel incoming food 

calories into fat rather than protein . The national 

health craze with obes ity is wel l  known . It "would be 

productive to determine how AY changes ce l lular 

metabo l i sm ;  once understood , it might be pos s ib l e  to 

develop ef fective treatments to prevent or retard human 

obes ity . 

3 .  Induct ion of a diabetic-l ike condit ion . AY st imul ates 

a diabetic-l ike condition in AY/ - mice ( Hell erstrom and 

Hel lman, 19 63 ; Hummell et al . ,  1 9 7 2 ) . An understanding 
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o f  AY•s precise role in stimulat ing diabetes could lead 

to novel treatments . 

4 .  Cancer . AY causes increased susceptib il ity to 

spontaneous and induced lung , l iver , skin , and 

mammary .tumors ( Heston and Vl ahakis ,  19 6 1 ;  Morgan , 

1 9 5 0 ; Vlahakis and Heston , 19 6 3 )  . S ince A,Y has 

a l so been reported to have a growth promoting 

effect (Wol f f  et a l . ,  1 9 8 6 ) , it may be that growth 

promoting and cancer produc ing characteristics may 

be related . The AY gene may provide clues and 

ins ights regarding cancer and growth regul ation . 
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LITERATURE REVIEW 

Rel at ionship o f  AY to Reproduction 

The lethal yel l ow gene (AY ) causes a number o f  

phenotypic alterations . Cuenot ( 19 0 5 )  described the genetic 

mutat i on and attributed three aberrant phenotyp ic 

alterations to the lethal yel l ow gene . These included 

yel l ow coat color , obes ity , and embryonic l ethal ity in A,Y. 

homo zygous embryos (AYJAY ) . S ince that time , a number o f  

other phenotyp ic alterations have also been attributed to 

AY. Cancer , diabetes , aberrant body temperature regulation , 

and increased body and tail lengths have also been observed 

in mice hetero zygous for AY ( Danforth , 1 9 2 7 ; Cizadl o , 19 7 6 ; 

Bray and York , 19 7 9 ) . 

Reproductive failure in mature obese yel l ow mice (A,Yja : 

Strain C57 BL/ 6J ) , especial ly fema l es , occurs progres s ively 
-

( Jeppesen , 1 9 85 ) . Granholm and Brock (198 0 )  reported that 

females put into production at puberty (AY.Jg_ � 

and AYj a  � x AYJg_d matings ) rarely produce third l itters , 

and have never been observed to produce fourth 1 i tters . 

Obese yel l ow females are poor breeders . 

In several mammal ian species , chemical factors· cal l ed 

pherom_ones have been shown to exert an important regulat iDg 

in fluence on reproduction , 

behavioral patterns (Bronson , 

aggress iveness , and other 

1 9 7 0 )  . · There fore , the 

inab i l ity o f  obese AYJa . females to breed could be due to 
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pheromonal aberrations . With respect to the Bruce and 

Whitten effects , the neurosecretory competence of AYja mice 

of both sexes to produce , release , receive and respond to 

pheromones revealed no cons i stent d i fferences between AYf a  

and nonyel l ow control s  ( Bartke and Wol f f , 19 6 6 ; Kakihana et 

a l . ,  1 9 7 4 ; Whitten , 1 9 7 3 ) . Granholm and Brock ( 1 9 8 0 ) 

performed a mating selection study us ing 6 - 1 2  week old 

C57 BL/ 6J AYja and gfa l ittermates ; they concluded that the 

AY gene did not influence mate selection or copulatory 

succes s  in young preobese AYj a fema les . Thus there are no 

conv incing data that support the notion of  aberrant 

pheromones in AYf a  femal es or mal es . 

Previous investigators ( Robertson , 19 4 2 ; Kasten , 1952 ; 

Eaton , 1 9 6 8 ) have suggested that AYj a females are deficient 

in stero id hormones . S ince the interplay o f  these hormones 

is crucial in regulating estrus and in ma inta ining a healthy 
-

uterine environment AY may a lter the synthes i s  andj or 

deployment of ovarian steroids . 

C i z adlo et al . ( 19 75 )  showed that the average mean 

l itter s i z e  o f  4 . 2  ± 0 . 7  ( mean + standard error-o f  the mean ) 

from stra in C57 BL/ 6J AYfg x g/a matings was lower ( P<0 . 05 ) 

than the mean o f  6 .  1 ± o. 1 from the reciprocal cross in 

which embryos develop in nonyel l ow uteri . Wo l f f  and Bartke 

( 1 9 6 6 )  a l so showed a reduced l itter s i z e  in yel low fema les 

by bl ack male mat ings ( 5 . 4  + 0 . 1 ) as  opposed to ( 6 . 5 ± 0 . 1 ) 

in reciprocal crosses . Wo l f f  and Bartke ( 19 6 6) also 
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reported a def iciency o f  AYja progeny born to AYfg femal es 

suggesting a speci f ic del eterious uterine ef fect of 

genetical ly yel low uteri ( AYj a )  o n  hetero zygous yel low 

( A�/ a )  embryos .  Granholm et a l . ( 19 8 6 )  found that obese 

A�/ a females had s igni f icantly reduced uterine we ights ( 49 . 2  

+ 4 . 1  versus 8 4 . 3  + 7 . 1  mg ) for A�/ a and g/a females , 

respectively . Granholm et a l . ( 19 8 6 )  also reported 

s igni f icantly reduced copulatory succes s  and concept i on rate 

in AYja females . Obese AYja females may experience sex 

stero i d  imbalances , perhaps as a secondary ef fect o f  reduced 

gonadotrophin act iv ity . 

Wol ff et al . ( 19 8 6 )  postul ate that unknown local 

environmental factors in the materna l  . reproduct ive tract 

influence the · di f ferent iation o f  AVYjg zygotes. The 

deve lopmental retardation and death o f  lethal yel l ow (AYfAY) 

embryos provides evidence for early act ivat i on of the agouti 
-

l ocus { Granholm a·nd Johnson , 1 9 7 8 } . Wol f f  et al. ( 1 98 6 ) 

a l s o  cite the 1 9 4 2  Robertson experiment in which AYfAY 

embryos supposedly surv ived a day l onger when they developed 

in nonye l l ow uteri as support for his "uterine factor" 

theory . Apparently these uterine factors influence the 

express i on o f  the agouti l ocus genes during early cleavage 

stages , since devel<;>pmental retardat i on occurs in lethal 

AY;A.Y embryos (Pederson and Sp indle , 19 7 6 ; Granholm and 

Johnson , 19 7 8 ) • It appears that the agouti locus may. be 

invo lved in some aspect of cleavage stage metabolism. Thus 
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in 2 - and 4 - cel l  stages the agouti locus could be 

synthesiz ing specific gene products that could be influenced 

or regul ated by factors within the reproductive tract 

( Jeppesen , 19 8 5 ) . 

Granholm et al . ( 19 8 6 )  a l s o  found that estrous cycl es 

qi f fered in obese A�/a mice when compared to age-matched gja 

control s . Of 7 0  A�/ a females tested , only 18 . 6 % (13/7 0 )  had 

typical estrous smears whi l e  4 4 . 3 % (3 1/7 0 )  g/g females 

disp l ayed typical estrous smears . Kasten { 19 5 2 ) . also had 

di f ficulty in obtaining typ ica l  estrous stage smears from 

obese A�/ a females dur ing a two week trial period . 

Fol l owing semiquantitative histo l ogical analyses o f  ovaries 

from mi ldly obese and obese A�/ - femal es Kasten ( 1 9 5 2 ) 

concluded that ovaries from obese females showed reduced 

corpora lutea and other s igns o f  infert i l ity . S ilberberg 

and S i lberberg (19 5 7 ) also reported marked lute ini z at ion o f  

ovaries o f  both A�/ - and gray contro l s  o f  strain YBR/WI 
. 
females . 

To date , Kasten { 19 5 2 ) and Granholm et al . ( 19 8 6 )  have 

analyzed the e ffects o f  A� on fema le reproduction . An 

analys i s  o f  ovarian stero ids in both cyc l ing and pregnant 

AYj- mice might estab l i sh the mol ecular and ce llular bases 

·o f  .AY acti on . Data on plasma progesterone , and estrogen 

l evel s  in cycl ing and pregnant mice have been reported (Murr 

et al . ,  1 9 7 3 ; Nelson et al . ,  1 9 8 1 )  . 

these studies dealt with . AYj - mice . 

However, neither o f  
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The precise target o f  AY gene act ion within the 

reproductive system is not known . Therefore , a brief 

discuss ion o f  the mammal ian reproducti on system is warranted 

to facil itate further discus s i on o f  the reproduct ive bas i s  

o f  the AY les ion . A l arge part o f  the following di scuss ion 

is adapted from Johnson and Everitt ( 19 8 4 ) . 

S ince the ovary is a predominant structure o f  the 

female reproductive system we can start with it s function . 

Each day a fter puberty a few fol l icl es recommence growth . 

It  is useful to trace one o f  these foll icles through its 

ful l  devel opment . 

The earl iest phase o f  foll icular growth is cal led the 

preantral phase and is characteri z ed by an increase in 

fol l icular diameter . The maj or part o f  this growth occurs 

in the primary oocyte . The granulosa cel l s  divide and wi l l  

become several layers thick . During thi s  dividing stage 

granulosa cel l s  secrete a glycoprotein material that forms 

an acel lular layer ( z ona pe l luc ida ) between themselves and 

oocytes . However , contact between granul osa cel l s  and 

oocytes is ma intained via · cytopl a smic processes that 

penetrate the zona and form gap junctions at the oocyte 

surface . Another layer of  cel l s , thecal cel l s , a l so forms 

during this phase . Unl ike granulosa _ cells , thecal cel ls  are 

highly vascul arized . Thus , the first phase of devel opment 

is ma inly characterized by an increase in both s i z e and 

complexity o f  the fol l icle . Thi s  phase is also independent 
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of any direct external control .  At the end o f  the preantra l 

phase , granulosa cells develop receptors for estrogen and 

follicle stimulat ing hormone ( FSH ) , while thecal cel l s  

devel op luteiniz ing hormone (LH) receptors . · Entry into the 

second phase is critically dependent upon pituitary 

gonadotrophin stimulat ion . 

During the second or antral phase o f  fol l icle 

maturation , many o f  the fol l icles undergo atres ia . During 

atresia the granulosa cells show reduced synthetic activ ity , 

accumulate lipid droplets ,  and develop pycnotic nuc l e i . 

Death o f  oocytes follows . However , atres ia can be prevented 

i f  adequate tonic levels of FSH and LH in the circul ation 

co inc ide with the development of FSH and LH receptors on 

granulosa and thecal cel l s , respect ively . The ef fect of the 

gonadotrophins is to convert the preantral fol l icles to 

antral fol l icles ( al so cal l ed Graaf ian fol l icl es) . During 

this convers ion process granulosa and thecal ce l l s  

proli ferate , result ing i n  a further increase i n  foll icular 

s i z e . Thecal cel ls divide into two dist inct layers , a 

highly vascular theca interna , surrounded by . . a fibrous 

capsul e , the theca externa . 

wi l l  a l so form between the 

A fluid f i l l ed cavity ( antrum ) 

div i ding granul osa cel l s .  A 

cumulus oophorus , a dense mass o f  g�anulosa c e l l s  suspended 

in the antrum , may also form . During th is phase fol l icles 

also begin to synthesi z e  stero ids ; gonadotrophins control 

fo l l icu l ar stero idogenesis . As the fol l icles increase in 
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After the termination o f  meiosis II , a number of  

changes occur in the cytoplasm o f  the oocyte . These 

include : ( 1 ) intimate contact between the oocyte .and the 

granulosa cel l s  is broken �y withdrawal of the cytopl asmic 

processes , ( 2 )  the Golgi apparatus begins to synthes i z e  

lysosomal-l ike granules , and ( 3 )  although prote in synthesis 
. 

continues at the same rate , new and distinctive proteins are 

synthes i_z ed . 

fert i l i z at ion . 

These activities wil l  prepare the oocyte for 

In addition to the phys ical changes that occur in the 

oocyte , major changes also take p l ace in stero id secret ion . 

Shortly a fter the beginning o f  the LH surge , the foll icle 

increases its output o f  estrogens and androgens· for a short 

time which then decl ine to low· l evel ·s . This· e l evated 

stero id output coinc ides with dist inctive changes in the 

thecal cells . Within a few hours a fter the LH peak , 

granul osa cel l s  also show some marked changes . Fir�t , 

granulosa cel l s  can no longer convert androgens to estrogen , 

as they were able to do in antral f o l l icles . Instead they 

synthesi z e  progesterone . S econd , LH st imul ates the 

synthes is of  progesterone via the newly acquired LH 

receptors . Third , granulosa cel l s  lose their capa.c ity to 

bind . estrogen and FSH . This _preovul atory phase o f  

fol l icular growth is usual ly the shortest , but culminates in 

the remarkable process of  ovulation . 

By the end of  the preovu l atory phase , the rap id 
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expans i on o f  the antrum has resulted in a thin peripheral 

rim o f  granulosa and thecal cells to which the oocyte is 

attached only by a tenuous and thinning stalk o f. cel ls .  

Only a thin layer o f  epithelial cells exist between the 

follicular wall and the peritoneal cavity . The ·follicl e  

then ruptures when this thin layer o f  ep ithel ial cel l s  

becomes very thin and avascular . The fluid within the 

follicle then flows out over the surface o f  the ovary 

carrying with it the oocyte and its surrounding mass o f  

cumulus cells . In some spec ies including the mouse , a 

peritoneal capsul e or bursa encloses the ovary and acts to 

retain the egg masses close to the ovary . The egg masses 

are then collected by the concerted beating o f  ov iductal 

c i lia and drawn into the oviducta l - ost ium . 

The collapsed fol licle i s  now transformed into a corpus 

luteum . This process is known as. lutein i z ation and is 

assoc iated with a steady increase in the secret ion o f  

progestagens . The maintenance o f  the corpus luteum requires 

hormonal support . However , this support varies from species 

to species.  LH provides the ma in support in humans.  In 

mice prolact in predominates. The l i fe of  the corpus luteum 

in non-pregnant females is a l so species spec i f ic . In mice 

it lasts for about 2 days and then l �teolysis occurs . 

The length of fol l icular devel opment varies with 

species . Johnson and Everitt (1 9 8 4 )  reported that in mice 

the durat ion of  preantral phase as 14  days, antral phase as 

442167 
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4 days , preovulatory phase as 1 1  hours , and the luteal phase 

as 2 days . Whatever the actual length o f  follicular 

development , the preovulatory phase is always the shortest . 

The ovarian cycle of  the nonpregnant mouse shows much 

the same pattern as large farm an imals . Estrus occurs at 4 -

6 day intervals throughout the reproductive li fe span 

(Whitt i ngham & Wood , 1 9 8 3 ) . The estrous cycle is divided · 

into four phases , proestrus , estrus , metestrus , and 

diestrus . Proestrus and estrus culminate with ovulat ion and 

represent the follicular phase o f  the ovarian cycle , wh ile 

metestrus and diestrus const itute the luteal phase . The 

phases can be dist inguished by vag ina l smears , and numerous 

investigators 

(Allen , 1 9 2 2 ; 

have characteri z ed these estrous 

Bingel ,  19 7 4 ;  Bin�el and Schwartz , 

phases 

19 6 9 ) . 

The mouse also has one more curious feature that allows 

its ovar ian cycle to vary in length , depending on whether 

females become pregnant (Johnson and Everitt , 19 8 4 ) . I f  a 

fe·male has an infert i le mating at the time of ovul ation , her 

luteal phase is 11- 12 days in duration . However , i f  she 

fa ils  to mate at ovul at ion her luteal phase is · only 2 - 3 days 

long . The explanation for thi s  i s  that mechan ical stimul i 

to the cervix ( occurring at copulat ion ) relay messages to 

the central nervous system ( CNS ) el icit ing the release of 

prolact in . The luteal period i s  extended . Prolactin is 

essent ial for ma intenance of the corpus luteum , and without 

it , luteal l i fe is abbreviated to only 2 or 3 days ( Johnson 
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and Everitt , 1 9 8 4) . This abbrev i ating device allows mice to 

be fert ile every 4 or 5 days instead of every 13 or 14 days . 

The increased reproductive e ffic iency o f  thi s  evolutionary 

mod i f i cation should be apparent . 

Little ·is known about the prec ise secretory timing o f  

ovarian steroids i n  the mouse (Whitt ingham and Wood , 19 8 3 ) .  

However , a brief review o f  the regulation of gonadal 

function in mammals in general may be useful to fac ilitate 

our discuss ion of poss ible A�- induced reproductive lesions . 

An important concept prev i ous ly discussed was the 

abi lity of the mouse to reduce it ' s  ovarian cycle to 4 - 5  

days instead o f  the expected 12 - 1 3  day cycle . This concept 

o/as the control o f  the ovarian cycle by the CNS . Two areas 

.of the brain , the anterior p ituitary and the hypothalamus , 

exerc ise a delicate control over the ovarian cycle . 

The hypothalamus , a relat ively small area that lies at 

the base of the brain releases one or more neurohormones 

that regulate the synthes is and release o f  both FSH and LH 

from the pituitary . This hormone is called gonadotrophin-

releas ing hormone ( GnRH ) and is secreted into port.al vessels 

which travel to the pituitary gland . GnRH is released as a 

series o f  pulses , travels to the anterior pituitary by way 

o f  the portal vessels , and induces or triggers gonadotroph in 

secret ion in a s imilar , pulsatile manner . By increas ing or 

decreas ing the amplitude or frequency of these GnRH pulses , 

the output of LH and FSH may be regul ated . 
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The hypothalamus also exercises eontrol over the 

secretion o f  prolact in . It does this through another 

neurohormone known as dopamine . However , dopamine acts on 

the anterior p ituitary in a way quite d i f ferent from that o f  

GnRH . Dopamine acts as an inh ib itor on the anterior 

p i tu itary , and thereby depresses prolactin secretion . For 

·thi s  reason dopamine has become known a s  prolact in 

inhibitory factor ( PI F )  . Both GnRH and dopamine also act as 

neurotransmitters at other s ites within the central nervous 

system . 

Secretion and synthes i s  o f  FSH and LH by the anterior 

p ituitary are dependent upon the pulsatile stimulation ·· o f  

GnRH from the hypothalamus . However ,  the regulation o f  FSH 

and LH secretion can also be achieved directly at the leve l 

o f  the anterior pituitary . The regulation of  GnRH , FSH , and 

LH are exerc ised ma inly by secretory products of the ovary 

through both negative and pos itive feedback effects . 
. 

After ovariectomy or menopause , plasma levels o f  FSH 

and LH increase markedly . The reason for this is that the 

ovary pro<:Iuces ·a group of hormones known coll"ectively as 

estrogens which act both upon the hypotha lamus to regul ate 

the release of GnRH and . upon the anterior pituitary to 

regulate the re lease of FSH and LH. S ince estrogens in l ow 

levels stimulate gonadotrophin rel ease , the process is known 

as negat ive feedback , i .  e .  l ow estrogen , high FSH/ LH 
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output . In relation to the estrous cycle ,  the decl ine o f  

FSH and LH during the early parts o f  the follicular phase 

are due to negative feedback e ffect o f  the estrogens . 

E strogen also has another e ffect on gonadotrophin 

sec retion . Interestingly , very high levels of estrogen 

enhance rather than suppres s  the release o f  FSH and LH .  

Estrogen acts on both the hypothalamus and the anterior 

p ituitary . However , it does seem that the anterior 

p itu itary is probably where the estrogens exert the ir most 

potent effect . The abil ity o f  estrogen to enhance FSH and 

LH secretion is termed positive feedb ack . I n  relation to 

the mouse estrous cycle , there is a 2 0 0 -4 0 0 %  increase in 

estrogen at the midpoint of follicle maturat ion . This 

increase in estrogen produces a surge o f  LH and a sl ight 

surge of FSH at ovulation . 

to induce LH receptors on 

As d iscussed , FSH is necessary 

granulosa cel ls,  while the LH 

surge i s  necessary for ovulation . 

A second hormone , progesterone , a l so plays an important 

role in the regulation of FSH and LH secretion . Progesterone 

in high plasma · concentrat ions wi l l  enhance the negat ive 

feedback e f fects of estrogen , on both FSH and LH .  High 

l evel s  o f  progesterone may also b l ock the posit ive feedback 

e ffect of estrogens . There is some evidence that - low 

concentrations o f  progesterone can actually facil itate the 

pos it ive feedback ef fects o f  estrogen by induc ing an LH/ FSH 

surge . However ,  pr�gesterone appears to act only upon the 
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hypothalamus , while estroge� acts on both the hypothalamus 

and the anterior pituitary . In general, high levels of 

proges�erone are associated with negative feedback and low 

levels with pos itive feedback . 

A third hormone has been implicated in the feedback 

regulation of FSH and LH. Thi s  hormone , known as inhib in , 

appears to be produced by the granulosa cells o f  maturing 

antral follicles . Inhibin is di f ferent from estrogen and 

progesterone , because it depresses FSH secretion but has 

little or no effect on LH secretion . The secretion of 

inhibin probab ly accounts for the observation that FSH 

decreases during the follicular phase ,  while LH secret ion 

actually increases . 

Feedback effects o f  the gonadal hormones are adequate 

to expla in the bas ic features o f  the reproductive patterns 

in females . However , the hypothalamic-p ituitary-gonadal 

axis is not a closed system , and external influences can 

clearly modulate it ' s  act ivity . For instance in mice , the 

day-night cycle can exerc ise profound e f fects on ovarian 

activity . In short , the estrous cycl e  can be .extremely 

labi le . 

S ince the AYj� femal e  d i sp l ays a progres s iv� 

infertility that seems to be correlated to ad ipos ity , it is 

worthwhile to di scuss how fat metabol ism may a f fect 

components of female mammal ian 

steroid synthes is and regulation . 

reproduct ion , especia l ly 

Des lypere et al . ( 19 8 5 )  
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have reported that fat tissue·can act as a steroid reservoir 

and a s ite of stero id metabol i sm .  A s ignificant l inear 

correlat ion existed between pla sma estrone and estradiol 

levels and total body weight and/ or fat mass ( Des lypere et 

al . , 19 8 5) • . Previous researchers ( Robertson , 19 4 2 ; Kasten , 

19 5 2 ;  E aton , 19 68;  Granholm et a l . ,  1986 ) have also 

suggested AY- caused ovarian stero id deficiencies and the 

potential role o f  fat in caus ing AY- induced steril ity . 

Cuenot ( 19 0 5 ) , in his description o f  the yel l ow mouse , 

discussed AY as a genetica l ly transmitted obese syndrome . 

However , in comparison to other rodents with inherited forms 

of obes ity ,  studies on AYj - mice have been l imited . S ince 

other genetical ly obese rodents al so have reproduction 

probl ems , it would be productive to briefly review how 

obe s ity may cause the ir steri l ities . Three obese rodent 

syndromes seem to have some l ikenes ses to the yel low mouse .  

These include obese ( ob/ob ) , diabetes ( db/db ) , and the fa�ty 

rat ( fa/ fa ) . 

The obese mouse ( ob/ob ) inherits its obes ity as an 

autosomal recess ive mutation on chromosome 6 ( Coleman , 

�9 78 ) . These an imals are a l so known to have mul tip l e  

abnormal ities of the endocrine systems , including impaired 

growth , impaired temperature reg�l ation , and impa ired. 

reproductive funct ion ( Swerdl o f f  ·et al . ,  1 9 78) . Therefore , 

ob/ ob mice may have a hypothal amic de fect . Early stud ies on 

the hypothalamo�pituitary ax is in males revealed smaller 
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than normal testes and reduced ventral prostate we ights 

(Swerdl o f f  et al . ,  197 6 ) . The obese animals also had lower 

serum testosterone and FSH leve l s , and they did not 

demonstrate an LH rise at 3 9 -4 5  days of age ( Swerdl off et 

al . ,  1 9 7 8 ) . These find ings indicate that the ·hypogonadism 

i s  secondary to altered hypothal amic-p ituitary funct ion . 

However , a second study attempted to separate hypothal amic 

from p ituitary dysfunction . An acute LHRH response test was 

admini stered to obese ( ob/ob ) and l ean ( +job ) l ittermates . 

Both groups showed an increase in serum LH concentration , 

but the increase was two - fold greater in lean an imal s  

( Swerdlo f f  e t  al . ,  1 9 7 8 ) . A further study was conducted to 

determine i f  the defect in obese anima l s  was due to problems 

in the pituitary gland or in the hypothalamus . I n  ·this 

study chronic amounts o f  LHRH were administered for 2 0  days 

a fter which an acute LHRH test was repeated . surpris ingly , 

·in both lean and obese groups , the LHRH response was sma l l _er 

from the chronic LHRH treatment as compared to the acute 

LHRH treatment ( Swerdlo f f  et a l . ,  1 9 7 8 ) . There fore , obese 

( ob/ ob ) mice have an impa ired response to LHRH,· and this 

would be cons istent with a de fect in p ituitary funct ion 

( Swerdl o f f  et al . ,  19 78) . 

_The diabetes mouse ( db/db ) inherits its obes ity as an 

autosomal recess ive mutation on chromosome 4 ( Coleman , 

19 7 8 ) . These mice also exhib it other abnormal ities that 

include hyperglycemia , hyperinsul inem ia , thermoregul atory 
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disturbances ,  and steril ity in both sexes ( Humme l et al. , 

19 6 6 )  . Other studies on food intake (Coleman and Hummel, 

19 6 9 ) suggest that the brain (hypothalamo-p ituitary axis ) 

may be the s ite o f  action o f  the db genetic locus. �ohnson 

and S idman ( 19 7 9 ) gathe�ed endocrine and reproductive data 

that suggest an abnormal hypothal amic funct ion ; they 

report ed that reproductive problems o f  homozygous db mutant 

females were associated with inadequate gonadotrophic 

stimulation and not with an unrespons ive reproduct ive tract. 

Equ ival ent increases in serum LH for mutant and contro l mice 

a fter G�RH treatment supported the notion that the prob lem 

in db/db mice relates to inadequate GnRH release from the 

brain ; Johnson and S idman ( 1 9 7 9 ) concluded that the 

reproductive neuroendocrine de fect is a hypothalamic 

disorder, but other CNS sites could play more fundamental 

roles. 

The fatty ( fa/ fa ) rat is inherited as an autosomal 

reces s ive mutation ( Zucker and Z ucker , 19 6 1 ) . These rats 

exhib it obes ity, hyperinsul inemia, hyperl ipemia, and reduced 

fert i l ity. Female fatty ( fa/ fa ) rats had de layed vag inal 

opening, prol onged estrous cycles, decreased uterine we ight, 

and absence o f  dec iduomata formation during reserpine­

induced pseudopregnancy ( Sa idudd in et al., 1 9 7 3 ) . · These 

effects would suggest a decreas ed estrogen secret ion or 

impa ired estrogen e ffect ( Sa idudd in et al., 19 7 3 ) .  However, 

since serum LH and FSH were found to rise norma l ly after 
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ovarian hypertrophy i n  response to uni l ateral ovariectomy , 

these data suggest a decreased threshold in the hypothal amus 

for feedback inhib ition o f  gonadotrophin secret ion 

(Sa iduddin et al· . ,  1 9 7 3 ) . There may be two defects in the 

reproductive system o f  fatty ( fa/ fa ) rats - estrogen and 

hypothalamus defects . Further evidence favors impaired 

hypothal amic function including d iminished feedback control 

o f  FSH secretion ( York et a l . ,  1 9 7 2 ) , altered thirst 

response to plasma osmolarity ( York and Bray , 1 9 7 1 ) , and 

defect ive regulat ion o f  food consumpt ion in response to cold 

stress ( Bray and York , 1 9 7 2 ) . 

In summary , AY does not appear to a ffect pheromonal 

communications , at least in young AYja mice . AY/ - females 

undergo a progressive infert i l ity apparently correlated with 

age and obes ity . Data suggest an AY caused host i l e  

uterine environment , a lthough this hasn ' t  been documented . 

Many reproductive parameters ( copulatory success , number .o f  

ova ovul ated , fertil i z ation success , uterine weight , 

recept ivity , and others ) decl ine in aging obese AYfa females 

even though their age�matched g/ a  l ittermates perform wel l  

( Granholm et al . ,  19 8 6 ) . The actual e f fects of AY on the 

reproductive system of A,Yj - mice are not known . 

adipos ity may play a key rol e . 

However , 
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Object ives 

The first study was conducted to determine whether the 

previously observed reproduct ive fai lures in aging obese 

l ethal yel low (A�/a )  females (Granholm et al . ,  1986 ) are due 

primarily to : ( 1 ) intrins ic defects within A�/a ovaries or 

(2) systemic defects extrins ic to A�/ a ovaries such as sites 

within the hypothalamus or p ituitary gland . 

A second experiment was conducted to assess uter ine 

capac ity in A�/a females . I n  order to accurately measure 

uterine capacity in A�/a fema l es , it was necessary to 

separate uterine effects from embryo (A�/a )  e ffects . Thus 

- by conduct ing the appropriate ovary transplantations , one 

could test uterine capac ity in A�/ a femal es in the absence 

of A�/ a embryos . 
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EFFECTS OF RECIPROCAL OVARY TRANSPLANTATION ON REPRODUCTIVE 
PERFORMANCE OF LETHAL YELLOW MICE (AYfa): C57BL/6J) 

SUMMARY 

This study was conducted to determine whether 

reproduct ive failures in aging , obese lethal yel l ow (AYjg)  

females are due primarily to de fects within· AYjg ovaries or 

to systemic defects which may operate outs ide the ovaries. 

Rec iprocal ovary transpl antat ion between control (g/ a ) and 

lethal yel low (AYjg) females provided an experimental system 

to test the reproductive potent ial not only . of AYj a ovaries 

in control (g/g) females but also of control {g/g) ovaries 

in mutant females . Resu·l ts on reproduct ive 

performance of all four comb inat i ons o f  gra fts between AYfg 

and gj a  mice proved that AY- induced reproductive fa ilures 

are not due to intrins ic ovarian l es ions but rather to 

de fects operating extrins ica l ly to the ovary . The 

hypothal amo-p ituitary axis is a l ikely site for th is 

reproductive les ion . 
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INTRODUCTION 

The l ethal yel low gene ( A�)  causes a number of  

metabol ic aberrations including yel l ow ha ir , embryo death in 

A� homo zygotes ,  obes ity , . cancer , and female steril ity ( Bray 

and York , 19 7 9 ) . Granholm et al . ( 1 9 8 6) have reported 

decreased copulat ion success , reduced uterine we ight , and 

depressed conception rate in A�/ a femal es older than 12 0 

days o f  age . These 

de ficienc ies in ovarian 

findings are 

stero ids . 

cons istent with 

S ince exogenous 

gonadotrophins at superovul atory levels ( 5 .  0 I .  U .  PMG/ 5 . o 

I . U .  HCG ) can partly restore ovulation rate , embryo 

rate o·f 

et al . ,  

v iab i l ity to 

reproduct ively 

2 -cell stages , 

senescent AYja 

and concept ion 

females ( Granholm 

1 9 8 6 ) , ovarian tissues can respond t o  FSH and LH. 

exogenous gonadotrophin- induced restorat ion 

Th is 

of 

fo l l iculogenes is , although productive in de l ineat ing 

potential bases of AY- induced reproductive senescence , does 

not clari fy whether the AY les ion results in a weak 

gonadotrophin signal to the ovary , �n impairment of ovarian 

thecal or granul osa cel ls to  respond to a normal 

gonadotrophin signal,  or both . Rec iprocal ovary gra ft ing 

provides. an experimental procedure to. determine the overal l  

capabil ity and there fore funct ional integrity o f  the A,Yjg_ 

ovary . Severely af fected reproductively nonfunct ional 

ovaries of ob/ob , db db and h£9/hQg mice have been shown to 
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ovu l ate and produce expected frequenc ies of mutant and 

nonmutant progeny upon gra fting to nonmutant recip ients 

(ob/ ob : Hummel ,  1 9 5 7 ; Batt and Ha.rrison , 19 6 3 ;  db/db : 

Hummel et al . ,  1 9 6 6 ; Johnson and S idman , 1 9 7 9 ; !mgjh12.g : 

Bamber et a l . ,  1 9 8 0) .  



2 7  

MATERIALS AND METHODS 

Breeding stocks of  C57 BL/ 6J AYja and gja mice were 

obta ined from The Jackson Laboratory , Bar Harbor , · Ma ine . 

Mice were produced by means o f  trio mat ings , 2 gja x AYfg . 

Mouse fac i l ity environmental conditions were kept constant 

at 1 6h l ight : Sh darkness and 21 degrees c. Wayne Breeder 

b l ox and water were avai l able ad l ib itum . The bedding of  

white p ine shavings was changed weekly . 

Virgin AYja and gjg females , 5 0 -7 0 days of  age , were 

used as donors and recipients . Anaesthes ia was induced by 

tribromoethanol ,  and ovaries were transplanted · using 

surgical procedures outl ined by Jones and Krohn ( 1 9 6 0 ) . 

Donor ovaries were surgica l ly removed , placed in petri 

di shes of Brinster ' s  BMOC I I I  medium ( Gibco , NY ) on ice , 

b i sected , and hal f  ovaries were grafted to empty ovarian 

bursae . Stevens ( 19 5 7 ) documented that gra fts of hal f  

ovaries resulted in greater reproduct ive effic iency ( i . . e .  

average l itter size  and average number o f  l itters per 
• 0 

operation ) than did whole or quarter ovaries . 



TABLE 1 .  RECIPROCAL OVARY TRANS PLANTATIONS . 

Genotype 
Gra fting o f  grafted Genotype Grafting 

Type Ovary o f  host Des ignation 

Surgical controls 

I g./a gja B-Bl 

I I  AY.j a AY.ja Y-Y 

Experimental gra fts 

I I I  g./ a AY.ja B-Y 

IV AY.j a gjg Y-B 

2 8  

Expected 
progeny 

from 
hosts 

x black 
(gj a )  mal es 

Al l gja or 
bl ack 

lAY./ a :  lgj g 

Al l gjg or 
black 

lAY.Jg : lgjg 

1 ovary genotype-host genotype ; B=gj a , Y=AY.fg ; in the case 
of B-B, B or g/g ovaries were gra fted to B or gjg hosts . 

Tabl e  1 displays the four qual itatively di fferent types 

o f  ovarian gra fts that were conducted . Groups I and I I  were 

necessary controls to account for non-AY. rel ated surgical 

l os ses . Groups I I I  and IV were the experimental rec iprocal 

ovarian transpl -antations combining gj a ovaries with in AY.j a 

hosts ( B-Y)  and AY.fg ovaries within gjg hosts ( Y-B) , 

respect ively . S ince C57 BL/ 6J gj,g and AY.f,g mice possess 

uni formly black ( B ) and yel low ( Y )  coats respect ively , 

gra fting des ignations B-B , Y-Y , B-Y and Y-B were used to 

indicated the relationship between ovary and host genotypes . 

For example , gra fting designat ion B-Y indicates gj a ( B )  
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ovaries gra fted into AYja ( Y }  hosts . 

After surgery, females recovered for one-week . Then 

host females were individual ly pa ired with proven B}g ma les 

to assess their reproductive performance . The paired 

mat ings were maintained unt i l  hosts fa iled to have a l itter 

with in a 1 0 -week period a fter the i r  l ast l itter . Each host 

was scored for total l itters, mean progeny per l itter , 

genotypes o f  progeny, and other measures ( Tables 2 and 3 } . 

Numerical di fferences in thes e  values were tested for 

stati st ical signi ficance using x2 analyses . 

Ten weeks following the ir l ast l itters , females were 

inj ected with superovul atory l evel s  o f  gonadotrophin-l ike 

hormones - PMS and HCG . PMS ( Gestyl , Organon } was prepared 

immediately prior to the start of the experiment . Each PMS 

vial conta ined 4 0 0  I . U .  ( Internati onal Units o f  biological 

act iv ity in a lyophil i z ed form . ·One ml . o f  sterile sal ine 

was added to the powder to rehydrate the PMS and then 

removed and pl aced in a sterile 25 ml . vial with 7 ml . of a 

bal anced salt solution ( Brinster ' s  medium} as a di luent . 

The final concentrat ion of the hormone was 5 0.0 I . U .  per ml . 

or 5.0 I . U .  per 0.1 ml . Each mouse rece ived a 0 . 1 ml . 

inj ection containing 5.0 I . U .  o f  PMS . 

The HCG ( Pregnyl , Organ_on } ,  wh ich was lyophil i z ed ,  was 

reconst ituted and diluted with Brinster ' s  medium to a fina l 

concentration o f  5 0.0 I . U . jml . Aga in , each mouse rece ived a 

0 . 1  ml . inject ion containing 5.0 I . U .  o f  PMS . 
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Analyses o f  reproductive parameters included the 

following . Thirty-eight hours fol l owing HCG inj ect ion , each 

female was weighed to the nearest 0 . 1  g .  and sacr i ficed . 

Ovaries and uterine tracts were removed and each pair of 

organs was weighed to the nearest 0 . 1 mg . 

Ovaries were visually observed under a Nikon dissecting 

microscope at sox and then " pricked" with 2 5  gauge 

hypodermic needles . We used a procedure s imilar to that 

described in Ra fferty ( 1 9 7 0 )  , who used this technique to 

l iberate ova from Graafian fol l icles for in vitro 

fertil i z ation experiments .  This ovary "punch ing" technique 

was j udged to be a good method to standardize  treatment 

between AY.j a and gj,g ovaries and obta in a quantitat ive 

measure of the abil ity o f  an ovary to l iberate ova within 

ovarian fol l icles . Each ovary was "punched" or "pricked" 7 5  

t imes . Ovarian fragments and ova were suspended by adding 

approximately 0 .  5 ml . o f  phys iological sal ine . Us ing the 

d issecting microscope , the number of · l iberated ova was 

c ounted . 

Each uterin.e horn and oviduct was observed ·under the 

d i s secting microscope . I f  no ova could be detected in the 

proximal ampul l ary regions o f  the oviduct ( i . e .  the end of 

the oviduct which receives ova ) , the oviduct was flushed 

with 0 . 1-0 . 2  ml . of phys iological sal ine · fol lowing insertion 

o f  a truncated 3 0 -gauge needl e .  Recovered ova andjor 

embryos were cl ass if ied a s  normal ova ( N )  or 
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vesicul ated/ abnormal ova (V) . 

Numerical differences in reproductive parameters 

between experimental and control groups were stat i s t ically 

analyzed us ing x2 and analys is o f  variance . 
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RESULTS 

Gra fting success was tested by analyz ing genotypes of 

the o f fspring . To comp l ete grafts in  Group I I I  

success ful ly , AYja ovaries o f  hosts must be completely 

removed and replaced by hal f oyaries of gja donors . These 

B-Y females when mated to g./a mal es should produce only 

black (g./a) progeny . 
. 

The presence o f  any AYja neonates 

would indicate incomplete removal of host AYja ovarian 

t i s sue . O f  6 6  offspring derived from B-Y x B matings , all  

38  surviving neonates were genetica l ly gja . S imi l arly , 

fol l owing success ful transpl antati on in Group IV , mat ings of 

Y-B females to gj a males should result in a 1 : 1 rat io of 

AYja to gja progeny . O f  the 1 5 1  surv iving progeny from this 

mat ing ( 1 5 1/25 1 )  the ratio o f  AYja to S/s · mice was 59 : 9 2. 

Al so , each Y-B female o f  Group IV produced at l east one AY/.s 

mouse , thereby genetically veri fying success ful grafting of 

AYj a ovarian tissue to gja females . 

The overall des ign of this study allowed us to test the 

performance of both mutant ovaries in control hosts ( Y�B )  

and control ovaries in mutant hosts ( B-Y ) . If A_Y..- induced 

de fects are intrinsic to AYja ovaries , reproductive 

performance in Groups II and IV should be equally low in 

compari son to Groups I and I I I ,- s ince intrins ical ly 

de fect ive AYfa ovaries in gja hosts should not perform 

apprec iably better than AY/a ovaries in AYj_g hosts (Table 

1 ) . In contrast ,  if AY- induced reproductive senescence 
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results from causes extrins ic t o  the ovary , females in 

Groups I and IV , which have control hosts ( B-B and Y-B )  , 

should perform comparably better than mice in Groups I I  and 

I I I  which posses mutant host ( Y-Y and B-Y ) . 

A total o f  67 host femal es ( 1 6 with in each o f  Groups I 

and I I , 1 7  in Group III , and 1 8  in Group IV) were scored for 

reproductive performance ( Tabl e  2 )  . The mean percentage 

pregnancy in a l l  groups was 5 9 . 7 % ( 4 0/ 6 7 ) , with control s  

( B- B  and Y-Y ) having a pregnancy rate o f  6 2 . 5 % ( 2 0/ 3 2 )  

versus the experimental ( B-Y and Y-B)  pregnancy rate o f  

5 7 . 1 %  ( 2 0/ 3 5 ) . The 3 5 . 3 %  pregnancy i n  the B-Y females 

( Group I I I ) was signi ficantly reduced ( P< 0 . 0 1 )  from that in 

the other three groups . 

Host females from all 4 groups produced a total o f  5 9 9  

progeny from 12 9 total l itters ( 4 . 6  progeny per l itter ) . 

Group ( B- B )  and Group IV ( Y- B )  produced 7 3 . 1% ( 4 3 8/ 5 9 9 )  o f  

the progeny , while Group I I  ( Y-Y ) and Group I I I  produced 

only 2 6 . 9 % ( 1 6 1/ 5 9 9 ) of the progeny . · Groups I and IV also 

produced 94  o f  the 129  l itters ( 7 2 . 9 % )  . . Groups I and IV did 

have one more mouse in the ir groups , but one addi tiona! 

mouse would not be expected to yield that great a difference 

in progeny ( i . e . , 72 . 9 % versus 2 7 . 1% ) . Groups I and IV 

produced nearly ident ical mean l itters per female , 4 . 0 and 

3 . 9 ,  whi l e  Groups I I  and I I I  a l so show a similar but 

decreased number of l itters per femal e ,  2 . 0  and 2 . 5 .  In 

fact , except for one B-Y fe�a l e  that produced six l itters , 
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mean l itters per pregnant femal e  i n  Group I I I  were ident ica l 

with those o f  Group II . The mean progeny per l itter in each 

o f  the four groups are nearly the same . 

A cons iderable number o f  neonqta l  mice died be fore Day 

4 or 5 ,  and · their coat colors could not be _determined , i . e .  

4 6 . 4 % ( 2 7 8/ 5 9 9 ) of  the popu l ation . These neonatal losses 

were uni form in Groups I,  I I I  and IV at 4 3 . 9 % ,  4 2 . 4 % and 

4 0 . 0 % ,  respectively . However , mice in Groups I I  ( Y -Y ) 

susta ined a 7 1 . 6 %  neonatal loss  which , when compared to 

neonatal deaths of Groups IV ( Y-B ) , was s igni f icantly higher 

( P< 0 . 0 1 ) . These mortal ity data , a lthough poss ibly spurious , 

may be a reflection o f  poorer mothering abi l ity , l ess 

tol erance to stress , or other factors inherent in AY/£ 

versus gj a  hosts . I f  so , comparabl e  neonatal losses should · 

a l so have occurred in the ·  B-Y femal es ( Group I I I ) but did 

not . One cannot rul e  out the ·poss ible potent iat ion between 

gra fted AYjg ovaries and AY/s hosts that could l ead to the 

observed 7 1 . 6 % neonatal death rate . 

Data on parity and l itter s i z e  in each of the four 

groups a re · presented in Tab l e  3 .  Mice in Groupi I and IV 

had 1 3  and 2 2  l itters within the 4 th to 9th parities , wh i l e  

only three 4th t o  9 th parity l itters were produced by mice 

in Groups II and I I I  ( P< 0 . 0 1 ) . Al l 3 o f  the 4th to 6th 

parity l itters with in Group I I I  were derived from one highly 

unusual AY/£ female that never became obese . The most 

product ive of the four gra fting types was the Y-B 
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comb ination . F ive of  the 1 8  females in that group produced 

6th l itters , and 4 of these went on to have 7th l itters in 

spite o f  the fact that they possessed AYja ovaries . In  

contrast , only 1 of  17  mice in the B-Y group , an unusual ly 

thin AYja host , had six l itters . 

Data on female weights , uterine weights , ovarian 

we ights , and other parameters are presented in Tab l e  4 . 

After the females failed to produce a l itter during a 1 0 -

week period , they were then inj ected with superovulatory 

l evels o f  gonadotrophin-l ike hormones ( PMS and HCG ) . 

Thi rty-eight hours after HCG inj ection , the females were 

weighed and sacri f iced . The reproduct ive tracts. were then 

analyz ed . 

Mice in Groups I and IV had mean body weights o f  3 1 . 0 

g .  and 3 0 . 8  g . , while Groups I I  and I I I  had mean we ights o f  

4 7 . 5  and 4 7 . 2 .  Female weights were s igni ficantly d i f ferent 

( P< O . 0 1 )  . 

ovarian we ights and uterine we ights were not 

s igni ficantly different in the four groups . However , uteri 

of black females ( B-B and Y-B )  showed a trend ; they we ighed 

mathematical ly more than uteri of yel l ow f�ma l es ( Y-Y and 

B-Y ) . The uteri of black females ( B- B  and Y-B)  we ighed 5 2 . 6  

and 5 5 ·. 6 mg . , respectively 1 whi l e  - the uteri o f  yel l ow 

femal es ( Y-Y and B-Y ) we ighed 4 1 . 2  and 4 3 . 7  mg . 1 

respect ively . Al so , ovaries o f  yel l ow hosts we ighed 

mathemat ica l ly more ( 7 . 8  and 8 . 8  mg . )  than those of bl ack 
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hosts ( 6 . 6  and 5 . 5  mg . ) .  

The mean number of  oocytes rel eased a fter "punching " 

ovaries a l so shows a trend with Groups I and IV releas ing 

the h ighest amounts of ova , 6 . 8  and 7 . 5 ,  and Groups _I I  and 

I I I  releas ing the least , 4 . 2  and 4 . 0 .  How�ver , stat ist ical 

s igni f icance was not observed . 

Fol l owing ova recovery via flushing of the oviducts , 

Groups I and IV had the highest mean number of  ova present , 

4 . 6  and 3 . 4 ,  respect ively . Groups I I  and I I I  had the least 

amount of  ova , 3 . 2 and 2 . 9 ,  respect ively . 

O f  the 4 3  total mice in which the ov iducts were 

flushed , 6 7 . 4 % ( 2 9/ 4 3 ) yielded at l east one ovum from either 

the l e ft or right· oviduct . Thi s  indicates that the ovary 

and oviduct were functionally coup l ed in 6 7 . 4 % o f  the 

grafted hosts after ovarian transpl antation . Thi s  compares 

favorably with the overal l  5 9 . 7 % ( 4 0/ 6 7 ) pregnancy rate and 

indicates highly success ful gra fting o f  ovarian tissue . 
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TABLE 2 .  REPRODUCTIVE PERFORMAN�E OF FEMALES AFTER RECI PROCAL 
OVARIAN TRANSPLANTATION 

Parameter 
Measured 

No . of grafted females 
Pregnant females ( % )  
Total Litt ers 
Mean l itters per 

pregnant female 

Tota l progeny 
Mean progeny per 

l itter 

Genotypes o f  progeny 
No . A�/a progeny 
No . gj a  progeny 
Neonatal losses { % )  

Genotypic Comb inations 

Control s  
Gp . I Gp . I I  
( B-B ) ( Y-� ) 

1 6  
1 0 ( 6 2 . 5 ) 

4 0  
3 4 . 0+ 0 . 5  

1 8 7  

4 . 7+ 0 . 3  

0 
1 0 5  

8 2 ( 4 3 . 9 ) 

1 6  
1 0 ( 6 2 . 5 ) 

2 0  

2 . 0±0 . 2  

9 5  

4 . 8+ 0 . 3  

1 4  
1 3  

6 8 ( 7 1 . 6 ) 

Experimental s  
Gp . III  Gp . IV 

( B-Y ) ( Y- B )  

17 2 18 
6 ( 3 5 . 3 ) 14 ( 7 7 . 8 ) 

15  54  

2 . 5+0 . 7  3 . 9±0 . 7  

6 6  

4 . 4+0 . 5  

0 
3 8  

2 8 ( 4 2 . 4 ) 

2 5 1  

4 . 6±0 . 2  

5 9  
9 2  

1 0 0 ( 3 9 . 8 ) 

1 The end po int for evaluation o f  fert i l ity in females was 1 0  
weeks a fter either the last l itter o r  pa iring femal es with 
males � f  no pregnancies occurred . 

2 

3 
One female died during surgery in this group . 

Means + SEMs 
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TABLE 3 .  SUMMARY OF PARITY AND LITTER S I ZE CONTRIBUTION TO OVARY 
TRANSPLANTATION DATA 

Genotypic Combinations 
Controls Experimental s  

Gp . I Gp . I I  Gp . I I I  Gp . IV 
Parity ( B-B)  ( Y-Y ) . ( B-� ) ( Y-B ) 

a 

1 
2 
3 
4 
5 
6 
7 
8 
9 

4 . 3 ( 1 0 ) a 
5 . 1 ( 9 )  
5 . 1 ( 8 )  
5 . 0 ( 6 )  
3 . 8 ( 5 ) 
4 . 0 ( 2 )  

4 . 4 ( 1 0 ) 
5 . 1 ( 7 )  
5 . 1 ( 7 )  

4 . 2 ( 6 )  
5 . 0 ( 4 )  
5 . 0 ( 4 )  
5 . 0 ( 1 ) 
4 . 0 ( 1 )  
2 . 0 ( 1 )  

Mean progeny per l itter ( number o f  l itters ) . 

4 . 0 ( 14 ) 
4 . 3 ( 1 1 ) 
4 . 9 ( 7 )  
5 . 6 ( 5 ) 
6 . 4 ( 5 ) 
6 . 0 ( 5 )  
3 . 5 ( 4 )  
3 . 5 ( 2 )  
3 . 0 ( 1 )  
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TABLE 4 .  REPRODUCTIVE PERFORMANCE O F  GONADOTROPHIN-TREATED 1 

FEMALES AFTER RECIPROCAL OVARIAN TRANSPLANTATION 

Genotypic Comb inations 
Contro l s  Experimental s  

Parameter Gp . I Gp . II Gp . III Gp . IV 
measured ( B-B )  ( Y-Y ) ( �-Y ) ( Y-B)  

No . o f  females 
Mean weight per 

femal e  ( g )  
Mean ovarian 2 weight (mg )  
Mean uterine 

we ight ( mg )  
Mean oocytes 
mechanical ly 
l iberated from3 both ovaries 
Mean ova flushe� 

from oviducts 

1 0  

5 3 1 . 0±1 . 0  

6 . 6+ 1 . 3  

5 2 . 6+8 . 9  

6 . 8+ 1 . 0  

4 . 6+0 . 7  

9 

4 7 . 5+2 . 3  

7 . 8+ 0 . 6  

4 1 . 2+ 5 . 9  

4 . 2 + 1 . 7  

3 . 2+ 1 . 0  

1 3  1 1  

4 7 . 2 +2 . 2  3 0 . 8+1 . 2  

8 . 8+ 0 . 8  5 . 5+ 1 . 2  

4 3 . 7+2 . 8  5 5 . 6+ 6 . 7  

4 . 0+ 1 . 0  7 . 5+ 1 . 0  

2 . 9+0 . 7  3 . 4±1 . 3 

1 Inj ected with 0 . 1  cc , 5 . 0  I . U .  o f  PMS , fol lowed by 0 . 1  cc , 
5 . 0  I . U .  o f  HCG 4 8  hours later . 

2 

3 

4 

5 

Comb ined weights o f  ovaries ( two ha l f  ovaries ) . 

Number o f  oocytes released fol l owing mechanical "punch ing-" o f  
ovary . Only ovaries that released oocytes were included . 

Only oviducts that conta ined ova were included . 

X + S EM 



DISCUS SION 

Of the 6 7  host fema l es , 5 9 . 7 % became pregnant and 

produced viable offspring . Thi s  ovary transplantat ion 

e fficiency compares favorably to the 8 0 . 0% pregnancy rate 

reported by S tevens ( 19 5 7 ) and that o f. 4 6 � 5 % by Jones and 

Krohn ( 1 9 6 0 ) . Litter s i z e  in host females also compared 

favorably to l itter s i z e  fol l owing normal matings in 

C5 7 BL/ 6J - A�/g and gfg females ; Granholm and Brock ( 19 8 1 )  

report ed l itter sizes in BxB and YxB mat ings o f  6 . 7  + 0 . 2  

( 8 5 5/ 1 27 ) and 5 . 8  + 0 . 2  ( 8 2 3/ 14 1 ) , respectively . In the 

present study l itter s i z es in Groups I and I I I  wh ich 

represent BxB matings were approximately 7 0 %  of l itter s i z es 

obtained by natural matings . Als o , l itter s i z es in Groups 

I I  and IV which represent YxB matings were approximately 8 0 %  

o f  that produced by natural mat ings . Present l itter s i z es 

( 4 . 6 )  also compa�ed favorably to l itter .s i zes o f  3 . 2  and 4 . 0  

reported by Jones and Krohn ( 1 9 6 0 )  and Stevens ( 1 9 5 T) , 

respectively . 

Host females produced a mean o f  4 .  6 offspring per 

l itter . Those females that gave b i rth to l itters of two or 

less o f fspring represented only 8 . 5% { 1 1/ 1 2 9 )  of a l l  

l itters , and these small  l itters were ev�nly distributed 

throughout al l grafting groups . Thus , the AY mutat ion did 

not result in an infertil ity characteri z ed by a gradua l 

diminut ion in l itter s i z e . Excluding the singl e  thin AY/£ 

host in Group I I I  that had 4th , 5th and 6th l itters ( Table 

4 0  
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3 )  , females in Groups II and I I I  produced only 3 l itters 

averaging 4 . 8  of fspring per l itter and then abrupt ly ceased 

product ion . These results suggest that AY- induced 

infert i l ity , as reflected in thi s  study , is not a graded but 

rather an all-or-none phenomenon .  

After natural matings between AYf a  and g/g mice ( BxB , 
. 

BxY , YxB , and YxY ) , Granholm and Brock ( 19 8 1 ) reported that 

AYja femal es �ut into p.rodu�tion at puberty rarely had third 

l itters ( only 7 . 0 % o f  al l l itters ) and were never obs erved 

to produce 4 th l itters . In the present study , 5 females o f  

Group I V  ( Y-B)  had 4 th ,  5th and 6 th l itters and 2 of  the 5 

continued production for 8 l itters . S ince Y-B fema l es 

possessed genet ically yel l ow ovaries ( AYj a )  , these data 

document that AYfa ovaries when gra fted to a favorable 

reproduct ive environment such as nonyellow (gj a ) , can 

cont inue to function wel l  beyond the time they would 

ordinari ly become senescent in AYj a hosts . Clearly , AY-

induced reproductive senescence i s  not due to intrins ically 

defective ovaries . 

Host females had mean body we ights o f  4 7 . 4g . and 3 0 . 9g .  

for AYja and gja females , respect ively . These we ights are 

comparabl e  to those of Granholm et a l . ( 1 9 8 6 )  who reported 

mean we ights of 4 6 . 1  and 2 5 . 8g .  · for yel low and black 

females , respective ly . Granholm et al . ( 1 9 8 6 )  reported 

uterine we ights of  6 7 . 6  and 5 6 . 2  mg . for gj_g and AYj_g 

respect ively , which contrast from our findings of 5 4 . 1  and 
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4 2 . 5  mg . for gj a  and A�/ a , respect ively . Granholm et al . 

( 19 8 6 )  also reported greater number o f  oocytes ,  15 . 8 ,  for 

both groups after " punching" the ovaries , and greater number 

of ova , 13 . 4  and 1 1 . 1  for A�/a and gj a , respectively a fter 

flushing the oviducts . In the present s�udy we had means of 

7 .  2 ( gj a ) and 4 . 1  ( A�/ a) for numbers o f  oocytes released 

a fter " punching" the ovaries , and 4 .  0 and 3 .  1 ova for gJ a 

and A�/s. , respectively after flush ing the oviducts . One 

reason for this decl ine in uterine we ight and ovarian 

activity when compared to data of Granholm et al . ( 1 9 8 6 )  may 

be the s i z e  of gra fted ovaries ; gra fts were hal f  ovaries and 

there fore could be expected to be less productive than whol e  

intact ovaries . Another factor could be the age o f  the host 

fema l es . The experimental mice o f  Granholm et al . ( 1 9 8 6 )  

were about 12 0 days o f  age and older . · Mice in the present 

$tudy were a l l  _ over 2 2 5  days at sacr i fice ; many of these 

mice had probably entered menopause . The lowered ovarian 

ac� ivity at · · menopause could a l s o  account for decreased 

uterine weights , decreased number of ova flushed from 

oviducts , and lower ova recovery fol l owing ovary "punch ing " .  

In fact , 4 4 %  o f  the femal es rel eased no ova after ovary 

" pun9hing " , and 3 3 %  released no ova a fter flushing the 

oviducts . 

Certa in aspects o f  the l ethal ye l l ow syndrome such as 

hyperphagia , obes ity , induction o f  eumelanogenesis by alpha ­

MSH in AYj - mice ( Geschwirtd et al . ,  1 9 7 2 ; Granholm and· Japs , 
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1 9 8 4 ) , and suspected thermoregulatory de fects ( Turner , 19 4 8 ; 

Ci z aldo et a l . ,  1 9 7 7 ) are consistent with a general 

hypothalamic l esion . Other genetica l ly . obese rodents such 

as  db/db , ob/ob and fa/ fa have severe reproductive problems . 

which have been traced to speci f ic hypothalamo-p ituitary · 

defects . S ince AY- induced infert i l ity results from 

nonovarian defects , the hypothal amo-p ituitary axis is a 

l ikely s ite for the reproduct ive les ion . 
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SEPARATION OF MATERNAL AND EMBRYO CONTRIBUTIONS TO 
REPRODUCTIVE FAILURE IN AGING YELLOW MICE (AYjg: C57BL/ 6J )  

SUMMARY 

This study was conducted t o  determine i f  the reduced 

reproductive performance of aging yel l ow females (AYJg) is 

due primarily to the maternal uterine environment or to the 

presence of heterozygous yel l ow embryos (AYjg) within 

genetically yel low uteri . Genetica l ly black (g/g) ovaries 

were grafted into empty ovarian bursae of  7 9  experimental 

( AYj a )  and 5 4  control (g/a ) hosts . At 12 0 days o f  age or 

older , hosts were superovulated ( 5 . 0  I . U .  PMS/ 5 . 0  I . U .  HCG ) , 

mated to proven bl ack males , and scored for reproduct ive 

performance . S ince g/g ovaries were gra fted to AYja fema l es 

which were then · mated to gj a mal es , al l pregnant AYjg as 

wel l  as g/g hosts contained embryos of only one genotype , 

No AYjg .embryos were present in either experimental 

( AYj a )  or control (gj a )  hosts . 

Although uterine weights for AYja ( 2 2 8 . 7  + 3 3 . 1  mg , 

n=1 2 ) and gja females ( 3 6 5 . 8  + 8 2 . 4  mg , n=1 3 ) were not 

s ign i ficantly dif ferent , they showed a trend . The mean 

uterine we ight per decidua was s igni f icantly l ess ( P< O . O S )  

in AYj a  versus gj a hosts ( 4 5 . 5 + 6 . 6  mg v .  7 6 . 1  + 1 1 . 9  mg , 

respectively ) .  Mean somi tes per embryo and mean normal 

embryos were a l so signif icantly l es s  ( P< O . O l )  in AYJa versus 

y� hosts . Because of  the way in which the gra fts were 

conducted , both AYJ� and gja hosts when pregnant conta ined 
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only genet ica l ly bl ack (gja ) embryos .  Therefore differences 

in reproductive performance between AYj a and gj a hosts must 

be due to the environment of the host ' s  reproductive tract 

and not to the presence o f  heterozygous AYfg embryos . 

Results from this study document . that AY causes a 

s igni ficant decl ine in reproductive performance via · its 

act ion in the female reproduct ive tract independent of its 

action in heterozygous embryos ( AYfg)  . 



INTRODUCTION 

The lethal yel low gene ( A� )  causes a number o f  

phenotypic alterations including yel l ow ha ir , embryo death 

in A� homozygotes , obes ity , cancer and female steril ity 

( Bray and York , 197 9 ) . Prev i ous researchers { Danforth , 

19 2 7 ; Granholm and Brock , 19 8 1 ) have noted that yel low 

females (A�/ a )  had few l itters and stopped r�produc ing at an 

early age . Reduced reproduct ive e f f iciency in mature obese 

A�/a females mice occurs progress ively ( Granholm et al . ,  

1 9 8 6 ) . Obese yellow femal es greater than 12 0 days o f  age 

s imply do not breed wel l . 

I t  has been suggested that the reproductive tracts _ o f  

A�/a females may be _ poorer {more - hostile ) environments for 

devel oping embryos than oviducts and uteri in nonyel l ow 

femal es . Cizadlo et al . ( 1 9 7 5 )  showed that the average mean 

l itter s i ze of 4 . �  + 0 . 7  from stra in C5 7BL/ 6J AYjg_ x g_/ a 

mat ings was s igni f icantly l ower { P< O . 0 5 )  than the mean o f  

6 . 1 + 0 . 1  from the rec iprocal cross i n  which embryos devel op 

in uteri o f  nonyel low females . Wo l ff and Bartke ( 1 9 6 6 )  also 

found that l itter size  from yel l ow femal e  by bl ack mal e 

mat ings ( 5 . 4  + 0 . 1 ) was s igni f i cantly reduced ( P< 0 . 0 5 )  

compared to the reciprocal cross ( 6 . 5 + 0 . 1 ) ; in addition , 

there was a deficiency of AYf a  progeny born t o  AYf a fema les 

suggest ing a spec i fic del eterious uterine e ffect of AYfg_ 

uteri ·an AYjg_ embryos .  Granholm et al . ( 19 8 6 ) a l so reported 

reduced . uterine weight , .decreased copul at ion success , and 

4 6  
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depressed conception rates in AYj a females older than 12 0 

days o f  age . 

The above mentioned studies characteri z ed reproduct ive 

e ff i ciency in AYj a females which contained one-to-one rat ios 

of AYJg, to g./a embryos . Therefore one cannot accurately 

determine if the progress ive ster i l ity is due to the host ile 

A�/ a uterine environment , to heterozygous A�/a embryos 

devel op ing within A�/a uteri , or to both . 

The a im of  this study was to determine i f  the 

progress ive infert i l ity observed in A�/a females was due to 

the presence of mutant AYja embryos within the tract , to 

systemic de fects within the reproductive system of A�/s. 

females , or due a comb ination o f  both . By gra fting 

genetically g./ a  ovaries t o  A�/a fema l es and mat ing t o  g./ a  

ma l es , one can experimental ly produce a system in which only 

g./a embryos wil l be present in A�/g, mice . Such a system 

a l l ows one to determine the extent of  reproductive loss ·due 

to the A�/a reproduct ive system independent of  hetero zygous 

A�/a embryo contributions . 
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MATERIALS AND METHODS 

Experimenta l  animal s  were derived from C57 BL/ 6J -AYja 

and gj a  mice obta ined origina l ly from The Jacks on 

Laboratory , Bar Harbor , ·Maine . Males and females were 

derived from trio matings , 2 gj a  females x AYj a  male . Mouse 

fac i l ity environmental condit ions were kept constant at 1 6h 

l ight : 8h darkness and 2 1  degrees c. Bedding of  white pine 

shavings was changed weekly . 

were avai l able ad l ibitum . 

Wayne Breeder blox and water 

Donor and rec ipient females were 5 0 -7 0 days of age . 

Anesthesia was produced by tribromoethanol .  Ovaries were 

transplanted us ing the surgical procedures outl ined by Jones 

and Krohn ( 19 6 0 ) . Donor ovaries · were surgically removed , 

pl aced in petri dishes of Brinster ' s  BMOC medium ( Gibco , NY ) 

on ice , b isected , and hal f  ovaries were gra fted to empty 

ovarian bursae . Stevens ( 19 5 7 ) documented that gra fts . of  

hal f  ovaries resulted in greater reproduct ive e f fic iency 

( i . e .  average l itter si�e  and average number of l itters per 

operat ions ) �han d id whole or quarter ovaries . 

Two different types o f  ovarian gra fts were conducted . 

For the control group , g/g ovaries were gra fted to g/_g 

hosts . The experimental group involved the gra fting of  g/_g 

ovaries to AYfa hosts . 

After surgery , females recovered for 1-week . Then , 

each host female was individual ly p a i red with one proved £/£ 

mal e  to assess ovarian transplantation success . Females 
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were checked da ily for vaginal plugs indicating copulat ion . 

After two weeks all females were separated from males and 

placed in individual cages . Femal es were checked da i ly for 

the presence of offspring and for genotypes of the o f fspring 

a ssessed .bY coat colors . 

At 12 0 days o f  age or older each femal e  was 

superovulated with 5 . 0  I .  u .  of PMS and 5 . 0  I .  u .  o f  HCG , 

and placed with a "proven" gj a  male . Those females that 

copulated were analyzed for a number of reproduct ive 

parameters 10 days later . Those that did not copul ate . were 

separated for a 2 -3 week period , and then superovulated 

aga in . The females that copul ated were aga in analy z ed 1 0  

days l ater whi le those which d i d  not copul ate were analyz ed 

3 6  hours later . During the third repl ication , females were 

superovulated 3 times . 

Analyses of reproductive parameters for those mice that 

copul ated included the fol l owing . Ten days fol lowing the 

detection o f  a vaginal plug , each female was weighed ·to the 

nearest 0 . 1g and sacrif iced . Ovaries and uterine tracts 

were removed and each pair of organs was we ighed to the 

nearest o. 1 mg . Each ovary was visual ly scored for the 

presence o f  corpora 1 utea and fe l l  icles . The uterus was 

observed for total dec iduae . The·n dec iduae were diss ected 

out of the uterus and we ighed to the nearest O . lmg . Each 

dec idua was dissected . I f  an embryo was present , it wa s 

analyzed for its developmenta l progres s .  Criteria used for 
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evaluating 1 0 -day embryos included : 

1 .  Functioning (beating> heart which occurs at 9 

days according to Rugh ( 19 68 )  and The i l er 

( 19 8 3 ) ' 

2 .  Number of  somites - 1 3 - 2 5  for Day 9 and 2 6 -3 6 

for Day 1 0  according to Rugh ( 1 9 6 8 ) and 13 -2 9  on 

Day 9 and 3 0 - 3 9  on Day 1 0  ( Theiler , 1 9 8 3 ) , 

3 .  Forel imb buds - vis ib l e  on Day 9 and growing 

rapidly on Day 1 0  ( Rugh , 19 6 8 ) , 

4 .  Hindl imb buds - appear on 1 0 - 1/ 2  day embryo s 

( Rugh , 1 9 6 8 , The i l er , 19 8 3 ) , 

5 .  Ta il bud appears at 1 0 - 1/2 days ( The i l er , 

19 8 3 ) , 

6 .  Embryo turning embryo turning should . be 

7 .  

completed by the - 1 4  to -15  somite stage 

( Theiler , 1 9 8 3 ) . On day 9 ,  the embryo is sti l l  

twisted espec ial ly . at posterior end (Rugh , 

19 68 ) , 

Bra in d i f ferent iat ion on Day 9 the most 

prominent brain ves ic l e s  are the two ves icl es o f  

the prosencephal an plus mesencephalon , 

metencephalon ,  and myel encephalon . on Day 1 0 , 

the pa ired tel encephal ic ves icles continue to 

expand but the mesencephal on i s  the most 

prominent ( Rugh , 1 9 6 8 ) greater C-shaped 
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curvature o f  bra in and greater de f inition o f  

brain vesicles . 

Criteria used to determine i f  an embryo was N ( normal ) ,  

·R ( retarded in development but normal ) , · or . A ( abnorma l ) were 

the following . I f  the embryo had either 2 0  somites andj or 

three o f  the f ive yesjno criteria ( beat ing heart , forel imb 

bud , hindl imb bud , embryo turning , and ta il bud ) , it was 

def ined as N .  Dif ferentiat i on · o f brain ves icles was also 

used to de fine development � embryos were scored as 1 0  Day , 9 

Day , or l ess than 9 Days based on d i fferentiation and 

anatomical def inition o f  brain ves icles . Those embryos 

apparently develop ing normal ly which did not display those 

developmental criteria ass igned as N were de fined as R or 

devel opmental ly retarded . S ome o f  these embryos de fined as 

R were very e�rly Day 7 and Day 8 stages . In those 

instances where no embryo could be found within dec iduae , 

they were defined as A ( abnormal )  embryos . Al so , embryos 

grossly abnormal in the ir devel opment were de f ined as 

A ( abnorrnal ) . 

Reproductive parameters for those mice that did not 

copulate a fter superovulation included the fo llowing . At 

approximately 3 6  hours after HCG - inj ect ion , fema l es were 

sacri ficed and weighed to the nearest 0 .  1g . Ovaries and 

uteri were removed and weighed to the nearest 0 . 1  mg . 

Ovaries were scored visually with a d_issect ing microscope 
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for the . presence and staging o f  fo l l icles . Oviducts were 

flushed with a sal ine soluti on ( about O . lml ) and the number 

and condition of  ova recovered were recorded . 

S tatistical analyses were performed us ing analys is o f  

vari ance for a l l· continuous data , whi l e  the CATMOD procedure 

was used to compare discont inuous data . CATMOD is a method 

to measure frequency distributi ons and uti l i z es the Chi 

square statistic . 
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RESULTS 

By grafting genetica l ly black (gja or B) ovaries into 

yel l ow ( AY.ja or Y )  and black ( gj a  or B) hosts and mating 

these hosts to proven B mal es , one can test the ef fects of 

the aging Y uterus on reproduction . S ince genetically B 

ovaries were gra fted . into both Y and B hosts , al l progeny 

s ired by B males must be B .  I f  fragments of Y ovaries 

remained in · Y hosts as a result of incomplete host ovary 

removal ,  matings would result in Y (AY.j a )  rather than B ( gja) 

progeny . Such Y progeny were produced in only 3 . 8 % ( 1/ 2 6 )  

o f  a l l  test l itters . This s ingle host femal e  was el iminated 

from the study . 

Table 1 provides informat ion - on the overall des ign o f  

the experiment . ovary grafts were performed on a total of 

13 3 females . Of that total , 1 1 1  or 8 3 . 4 % survived the 

surgery and were used in the study . A large percentage _ o f  

thi s  1 6 . 6 %  loss was due t o  contaminated anesthes ia i n  one o f  

the rep l i cations . Of the 1 1 1  t6tal , 6 7  or 6 0 . 3 % represented 

B ovaries gra fted to Y fema l es ; i . e . , th� experimental 

group . The control group of  B ovaries grafted to B femal es 

numbered 4 4 . After surgical recovery , both Y and B hosts 

were bred to "proven" B males . I n  the experimental group 

4 9  . . 3 %  ( 3 3/ 67 ) copulated after pa iring with the proven B 

ma les . Ult imately 2 2  or 3 2 . 8 % B-Y females produced l itters . 

Four femal es in the experimental group produced l itters 

undetected by copulatory plugs . Thus , o f  the 6 7  surv iving 
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experimental hosts , 2 6  o r  3 8 . 8 % produced l itters . 

In the control group 4 5 . 5 % ( 2 0/ 4 4 )  copulated a fter 

pairing with proven B mal es , and 8 or 18 . 2 %  ultimately 

produced l itters . One femal e  in this group produced a 

l itter even though a copulatory p lug was not detected . Thus 

o f  the 4 4  surviving control hosts , 9 or 2 0 . 5 % produced 
. 

l itters . Therefore of the 1 1 1  total hosts , 3 5  or 3 1 . 5 % 

produced 1 i tters . As ment ioned above , 2 5  o f  2 6  l itters 

( 9 6 . 2 % )  from the experimental cross bred true . Therefore in 

the test population , the complete removal o f  AYjg_ ovaries 

and grafting of  gjg_ ovaries was 9 6 . 2 % success ful . 

Al l o f  the host femal es ( 67 B-Y and 4 4  B-B ) were 

superovul ated arid mated to proven B males . O f  the 1 1 1  

hosts , 4 9  o r  4 4 . 1·% mated as  j udged by copul atory plugs . 

Percentages o f  matings for exper imental and control group s 

were 3 7 . 3 % ( 2 5/ 6 7 ) and 5 4 . 5% ( 2 4/ 4 4 ) , respect ively . O f  the 

2 5  experimental hosts that copulated , 12 or 4 8 . 0 % were 

pregnant on Day 10 of gestation . In the control group , 

5 4 . 2 % ( 1 3/ 2 4 ) were pregnant on Day 1 0 . Thus , of total 

superovul ated females in the study , 2 2 . 5 % ( 2 5/ 1 1 1 )  were 

found to be pregnant a fter a gestation of 10 days . 

Percentages o f  1 0 -day pregnant hosts for experimental . and 

control· hosts are 17 . 9 %  ( 12 / 6 7 ) and 2 9 . 5 % ( 1 3/4 4 ) ,  

respect ively . Data on reproduct ive parameters o f  these 1 0 -

day pregnant mice are presented in Table 3 .  

Tab l e  2 provides data on mice that fa iled to copul ate 
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a fter superovulation . Of  the 1 1 1  mice that were super­

ovulated , 5 0 . 4 % ( 5 6/ 1 1 1 ) fa i l ed to copulate . Percentages of 

experimental and control hosts that fa iled to copulate were 

5 8 . 2 % ( 3 9/ 67 )  and 3 8 . 6% ( 1 7/ 4 4 ) ,  respectively . The mean age 

o f  host femal es at autopsy was not statistically di f ferent . 

Mean weight o f  females was greater ( P< 0 . 0 1 )  in Y as 

compared to B hosts . Yell ow (AYj a )  females we ighed 2 9 . 6  ± 

0 .  7 g , an increase in weight o f  18 . 9 %  over that o f  black 

( gj a ) females ( 2 4 . 9 + 0 .  5g) . The mean we ight of right 

ovaries was identical for both groups ( 5 .  o + 0 .  4 v .  5 .  o ± 

0 . 6 ) , whi l e  the left ovarian we ights showed o.nly sl ight 

mathematical d i fferences ( 5 . 1  + 0 . 5  v .  5 . 0  ± 1 . 0 ) . A visual 

score o f  the ovaries yielded the total ovarian fol l icles per 

fema l e . These numbers were a l so sl ightly d i f ferent 

mathematical ly for Y and B hosts ( 2 4 . 6  + 1 . 3 v .  2 8 . 7  ± 2 . 6 ) . 

The m�an uterine weights were greater ( P<O . 0 5 )  in B (gfg ) 

females as compared to Y (AYj a )  fema l es . The B (g/g)  uterus 

we ighed 6 1 . 2  + 7 . 7mg as compared to 4 7 . 2  ± 1 . 6mg for the y 

( AYj a ) . Mean ova recovered a fter flushing the . oviduqts were 

virtual ly the same for both groups ( 4 . 6  + 0 . 6  v .  4 . 8  + 0 . 9 ) 

as was the percentage o f  females that yielded ova ( 8 2 . 1 % v .  

7 6 . 4 % ) . 

Table . 3 provides data on mice that copulated after 

superovulation and were pregnant on day 10 of gestat ion . O f  

the 1 1 1  mice that were superovul ated , 2 5  o r  2 2 . 5% were 

pregnant on ·day 10 . Twelve o f  these were in the 
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experimental group while the other 1 3  were in the control 

group . 

With respect to ovarian weight , there were no maj o r  

d i f ferences between experim�nta l  ( B-Y ) and control ( B- B )  

groups . It is interesting to note that each ovary weighs 

approximately 5 . 0mg except the l e ft ovaries in control 

hosts . S ince each grafted ova ry is  in fact a hal f  ovary , 

the amount o f  ovarian hypertrophy or regenerat ion seems to 

be equivalent between the two groups . The mean CLs per 

fema l e  were s ign i ficantly higher in the control host ( 6 . 3  + 

1 .  2 )  versus the experimenta l  host ( 5 .  1 + 1 .  0 )  . Al so , 

control hosts possessed 14 . 0 % more ovarian fol l icles ( 4 5 . 6 ± 

5 . 8 ) than do experimental hosts ( 4 0 . 0  + 6 . 0 ) , although thes e 

d i f ferences are not statistical ly sign i ficant . 

Mean right uterine horn we ights were greater (P< O � O S) 

in B (g./ _g) fell.lales as compared to Y - (A�/ a )  females . The 

right uterine horn of Y females we ighed 7 5 . 2  + 17 . 4mg whil e  

the B right horn weighed 2 3 7 . 0  + 7 1 . 4mg . Le ft uterine horn 

we ights were not different when Y were compared to B ( 15 3 . 5  

+ 3 3 . 4mg v .  12 8 � 8  + 3 1 . 5mg ) . The mean total uterine we ights 

were not s ignificantly different even though control uteri 

we ighed 5 9 . 9 % more than experimental s . However ,  the great 

variat ion due to dif ferent numbers - o f  deciduae per uterus 

plus the l imited n numbers prevented statistical 

s igni f icance . Mean decidual weight$ were also not 

s ign i f icantly di fferent but the numbers are very dif ferent 
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mathemat ically ( 2 6 . 0  + 4 . 4mg v .  4 1 . 1  + 6 . 5mg) . The rat io of 

total uterine weight to total deciduae was greater ( P< 0 . 0 5 )  

· in B as compared to Y ( 7 6 . 1 + 1 1  • 9mg v .  4 5 . 5 + 6 . 6mg , 

respec.t ively) • 

With respect to embryos ,  there · was a s l ight 

mathemat ical increase in embryo number in control versus 

experimental hosts ( 4 .  2 + 0 .  8 v .  3 .  5 + 0 .  6 respectively ) .  

Mean somites per embryo and mean normal embryos were 

statistica l ly greater ( P< O . O l )  in B females as compared to Y 

females . The B females had 1 8 . 1 + 3 .  0 semi tes per embryo 

and 2 . 6  + 1 . 0 normal embryos per fema l e , while the Y femal es 

had 7 .  8 + 2 .  o somites per embryo and 1 .  o ± o. 4 normal 

embryos per female . Although the mean retarded and mean 

abnormal embryos were not s ign i f icantly di fferent between 

groups , the numbers appear to be fol l owing an expected 

trend . The Y females had mathemat ica l ly more retarded 

embryos ( 2 . 5  ± 0 . 7  v .  1 . 6  + 0 . 6 ) and abnormal embryos ( 2 . 1  + 

0 . 6  v .  1 . 5  + 0 . 6 ) than did B fema l es . With respect to the 

numbers o f  deciduae containing normal andjor retarded 

embryos , 7 2 . 4 % ( 4 . 2/ 5 . 8 ) of control and 6 2 . 5 % ( 3 . 5/ 5 . 6 ) o f  

experimental hosts possessed either normal and/ or retarded 

embryos . 

Table 4 provides informat ion on the mice that copul ated 

but were not pregnant on day 1 0  o f  gestation . Of the 1 1 1  

mice that were superovul ated , 2 1 . 6 %  ( 2 4/ 1 1 1 )  copul ated and 

were not pregnant on day 1 0 . Percentages of  exper imental 
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and control hosts that copulated and were not pregnant at 

day 10 are 1 1 . 8 %  ( 13/ 1 1 1 )  and 9 . 9 % ( 1 1/ 1 1 1 )  respect ive ly . 

The mean weight of  femal e s  was greater ( P< 0 . 0 1 )  in the 

experimental group . Yell ow ( AYj a ) females we ighed 2 8 . 8  + 

0 .  7 g  whi le black (gja ) females weighed 2 5 . 5  + 0 .  6g . The 

mean weight of the · right ovaries was greater ( P< 0 . 0 5 )  in the 

control group ( 5 . 2  ± 0 . 7  v .  2 . 8  + 0 . 7mg ) . However , the l e ft · 

ovaries were mathematical ly greater in the experimenta l  

group ( 5 . 0  + 0 . 4  v .  3 . 5  + 0 . 6mg ) . A visua l score of the 

ovaries yielded sl ight mathematical d i f ferences in mean 

fol l icles per female ( 2 7 . 8  + 4 . 5  v .  3 1 . 8 + 2 . 4 ) . Uterine 

weights were also mathemat ica l ly greater in the experimenta l  

group ( 1 10 . 8  + 2 2 . 6  v .  7 6 . 3  + l O . Smg ) . However , some o f  the 

uteri in the experimental group conta ined l arge amounts o f  

yel l owish fluid . Therefore , this mean is probab ly an 

inaccurate uterine weight . 



TABLE 1 .  REPRODUCTIVE PARAMETERS OF EXPERIMENTAL ( B-Y ) a 
and CONTROL ( B-B ) b HOSTS 

Genoty}2es 
Parameters B-Y 

Total ovary gra fts 7 9  
Total surviv ing hosts ( % )  6 7  ( 8 4 . 8 ) j 
Host copulat ion successC ( % )  3 3  ( 4 9 . 3 ) 
Hosts produc ing l ittersd ( % )  2 2  ( 3 2 . 8 )  
Hosts producing l itterse ( % )  4 ( 6 . 0 ) 
Tota l hosts produc ing 

l itters ( % )  2 6  ( 3 8 . 8 ) 
Hosts breeding truef 1 5  
Hosts copulating after 

superovulationg ( % ) h 2 5  ( 3 7 . 3 ) 
Hosts pregnant on day 1 0 ( % )  1 2  ( 17 . 9 ) 
Hosts that copulated and not 

pregnant on day 1 0 ( % )  1 3  ( 19 . 4 ) 
Hosts not copulating and ova 

recovered at 3 6  h . p . c .  3 9  ( 5 8 . 2 ) 
Hosts j udged not to have 

copul ated . but pregnant at 
3 6  � . p . c . 1 2 ( 3 .  0 )  

a gja ovaries gra fted to A2 ;a hosts . 
b gjg ovaries grafted to gja hosts . 
c Judged by presence of  copulatory plugs . 

4 4  
2 0  

8 
1 

9 

2 4  
13  

1 1  

1 7  

2 

d 

e 
Only those hosts who plugged and had l itters . 

Only those hosts that did not plug but had 
a l itter . 

f 1 5  females had at least 1 gja with no AY/� 

B-B 

5 4  
( 8 1 . 5 ) 
( 4 5 . 5 ) 
( 18 . 2 ) 
( 2 . 3 ) 

( 2 0 . 5 ) 

( 5 4 . 5 ) 
( 2 9 . 5 )  

( 2 5 . 0 )  

( 3 8 . 6 )  

( 4 .  5 )  

1 0  females had l itters that died be fore genotypes 
could be confirmed . 

g 
h 

i 

j 

1 fema le had a l itter with AYJg o f fspring and was 
el iminated from the study . 

5 . 0 I .  U .  PMS/ 5 . 0  I .  U .  HCG 
3 AYja and 3 gjg females were ki l l ed by ma le a fter pairing . 

Judged by the presence o f  2 -ce l l  embryos at 
3 6  h . p . c .  

Number · ( percent ) 

5 9  



TABLE 2 .  

Parameters 

EFFECTS OF A�/ a REPRODUCTIVE TRACT 
REPRODUCTIVE PERFORMANCE IN B-Ya and B-Bb 
HOSTS AT 3 6  HOURS POST COITUMc 

Genotypes 
B-Y B-B 

Number o f  females 3 9  17  
Mean age at autopsy ( days ) 1 8 0 . 1  + 3 . 6d 17 5 . 7  ± 2 . 7  

6 0  

ON 

Mean weight o f  females ( g ) 2 9 . 6  + 0 . 7  2 4 . 9  + 0 . 5 * *  

Ovaries 
Mean weight o f  right 

ovaries (mg )  5 . 0  + 0 . 4  5 . 0  + 0 . 6 
Mean we ight o f  left 

ovaries (mg )  5 . 1 + 0 . 5  5 . 0  + 1 . 0  
Mean total ovarian fol l icles 

per female 2 4 . 6  + 1 . 3  2 8 . 7  ± 2 . 6  

Uterus 
Mean uterine we ight (mg )  4 7 . 2  ± 1 . 6 6 1 . 2  + 7 . .7 * 

ova 
Mean ova recovered 4 . 6  + 0 . 6  4 . 8  + 0 . 9  
% o f  Grafted females 8 2 . 1 % ( 3 2 )  7 6 . 5 % ( 1 3 )  

yielding ova 

a aja ovaries gra fted to A�/ a hosts . 
b aja ovaries gra fted to gj a  hosts . 
c Superovulated females that fa i l ed to copul ate with proven 

gj a  males . 
d x. + SEM 

* P< 0 . 0 5 * *  P< 0 . 0 1 
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· TABLE 3 .  EFFECTS OF AY/s REPRODUCTIVE TRACT ON DEVELOPMENT 
o f  g/a EMBRYOSa AT 1 0  DAYS GESTATION 

Genot�aes 
B-Yb B-Bc 

Number o f  females 1 2  1 3  
% femal es pregnant on day 1 0d 4 2 . 9  

0 . 7 i _ 
4 8 . 1  

Mean we ight of females ( g )  2 8 . 5  + 2 7 . 1  + 0 . 6 
Ovaries 
Mean wt .  right ovaries (mg )  5 . 0 + 0 . 7  5 . 1  ± 0 . 7  
Mean wt .  left ovaries ( mg)  5 . 2  + 0 . 6  3 . 6  + 0 . 6 * 
Mean CLs per femal e  5 . 1  + 1 . 0 6 . 3  + 1 . 2 * 
Mean foll icles per female 4 0 . 0  + 6 . 0  4 5 . 6  + 5 . 8  
Uterus 
Mean wt . right horn ( mg )  7 5 . 2  + 17 . 4  2 3 7 . 0  + 7 1 . 4 * 
Mean wt .  left horn (mg )  1 5 3 . 5  + 3 3 . 4  12 8 . 8  + 3 1 . 5  
Mean total uterine wt . (mg )  2 2 8 . 7  + 3 3 . 1  3 6 5 . 8  ± 8 2 . 4  
Mean total deciduae 5 . 6 + 0 . 8  5 . 8  + 1 . 2  
Mean dec idual wt . ( mg )  2 6 . 0  + 4 . 4  4 1 . 1 ± 6 . 5  
Mean uterine wt . per _deciduae 4 5 . 5  + 6 . 6  7 6 . 1  + 1 1 . 9 * 
Mean uterine weight less total 

decidual we ight (mg ) f 9 3 . 5  + 1 0 . 3  1 3 5 . 1  + 2 1 . 8  
Mean Cls per dec idua 1 . 1 + 0 . 2  1 . 5  + 0 . 3  
Embi:YOS 
Mean embryosg 3 •· 5 + 0 . 6 4 . 2  + 0 . 8  
Mean somites per embryo 7 . 8  + 2 . 0  18 . 1  + 3 . 0 * *  
Mean normal embryosh 1 . 0 + 0 . 4  2 . 6  + 1 . 0 * *  
Mean retarded embryosh 2 . 5  + 0 . 7  1 . 6 + .0 .  6 
Mean abnorma l embryosh 2 . 1  + 0 . 6 1 . 5  + 0 . 6  

Host femal es were superovul ated , mated to proven g/£ 
mal es , and sacrificed at 10 days o f  gestation . 

b 

c 

d 

e 

f 

g 

h · 

i 

g/£ ovaries gra fted to AYj a hosts . 

gja ovaries gra fted to g/g hosts . 

O f  the 5 5  females that copulated 2 5  were pregnant on day 
1 0 . % AYf a  hosts were 4 2 . 9 ;  % B hosts were 4 8 . 1 . 

Ratio of  total uterine we ight to total dec iduae per 
fema l e . 

We ight o f  uterus not involved in the decidual i z ation 
response . 

Normal plus retarded embryos .  

S ee Methods for scoring criteria for normal , retarded , 
and abnormal embryos .  

X + S EM * p < 0 . 0 5 * *  p < 0 . 0 1 
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REPRODUCTIVE PARAMETERS O F  AYJa· AND g}g MICE THAT 
COPULATED BUT WERE NOT PREGNANT AT 1 0  DAYS O F  
GESTATION 

Genotypes 

B-Y B-B 

Number of females 
Mean weight o f  females ( g) 

ovaries 
Mean weight right ovaries ( mg )  
Mean weight left ovaries ( mg )  
Mean foll icles per female 

Uterus 
Mean we ight right horn (mg )  
Mean weight left horn (mg )  
Mean total uterine wt . (mg )  

1 3  
2 8 . 8  ± 

2 . 8  + 
5 . 0  + 

2 7 . 8  � 

6 7 . 0 + 
4 3 . 9  + 

1 1 0 . 8  + 

0 . 7  2 5 . 5  

0 . 7  5 . 2  
1 . 4  3 . 5  
4 . 5  3 1  . . 8 

1 6 . 0  4 2 . 6  
6 . 7  3 3 . 7  

2 2 . 6 a 7 6 . 3  

a Some o f  these uteri contained large amounts of a 
yel l owish fluid . 

* P< 0 . 0 5 

* *  P< 0 . 0 1 

1 1  
+ 

+ 
+ 
+ 

+ 
+ 
± 

0 . 6  * *  

0 . 7  * 
0 . 6 
2 . 4  

6 . 0  
4 . 9  
1 0 . 8  
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DISCUSS ION 

Thi s  study was conducted to determine i f  the reduced 

reproductive performance o f  aging AY/s females is due 

principal ly to the AYj a uterus , AY/s embryos within the 

uterus , or to both . The experimental des ign allowed us , via 

ovary gra fting to completely el iminate AY/s embryos a nd test 

sol ely the uterine capacities of AYj a ( experimental ) and gja 

( control ) females . Initially 1 3 3 ovary gra fts were 

comp leted . Only 1 1 1  survived the surgery . One pos s ible 

reason for the 1 6 %  loss was that in one group of gra fts , the 

anesthesia may have been contaminated . Upon replacing the 

anaesthes ia , the next group o f  mice survived with no losses . 

O f  the 1 1 1  hosts which did sur-Vive , it was necessary to 

confirm :  ( 1 )  complete removal o f  o ld or nat ive ovarian 

tissue and ( 2 )  success in gra fting the new ovarian tissue 

( hal f ovary ) . Of the 67  AYfa females that were pa ired with 

gja proven males 2 6  had l itters . O f  these 2 6  l itters , 15 

l itters survived long enough ( 3 -4 days ) to determine 

genotypes based on coat col ors . Al l 1 5  litters contained 

only g}g o ffspring , indicating succes s ful removal o f  the 

original AYfs ovary . One B-Y femal e  did have AYf£ o f fspring 

and was el iminated from the study . With these test mat ing 

results and those of the previous study ( see Experiment I 

and Granholm and Dickens , 19 8 6 )  it appears that AYf£ ovaries 

were completely removed in the experimental (AY/£) females . 

There f6re , B-Y hosts wh ich become pregnant via mat ing with B 
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mal es possess only gja embryos .  

The analys is o f  reproductive performance in mice that 

did not copulate a fter superovu l ation ( Table 2 )  y ielded one 

s igni ficant d i fference between AYj a  and g/g females . Bl ack 

females had greater ( P< 0 . 0 5 )  mean uterine we ights than did 

yel l ow femal es ( 6 1 . 2  + 7 . 7mg v .  4 7 . 2  + 1 . 6mg , respectively ) .  

These weights are comparabl e  to those o f  Granholm et al . 

( 19 8 6 ) ; they reported uterine weights o f  8.3 . 3 + 7 . 1mg for 

gja and 4 9 . 2  + 4 . 1mg for AYja females . Granholm et al . 

( 1 9 8 6 )  also found s ign i f icantly greater ( P< O . O l )  ovarian 

weights in AYja females ( 7 . 9 + 0 .  3mg )  as opposed to gj a  

fema l es ( 5 . 7  ± 0 . 2mg ) . Greater AYja ovarian we ight did not 

occur in the current study in which ovarian weights were 

found to be virtually identical ( Tabl e  2 ) . However ,  in the 

current study , donor ovaries were bisected prior to 

gra fting . Such bisected halves would most l ikely not be 

abl e  to compensate or hypertrophy to the same s i z e  and 

weight as  non-bisected · ovaries in the study o f  Granholm et 

a l . ( 19 8 6 ) . Interestingly , ovarian we ights in both Tables 2 

and 3 wh ich represent 8 1  females and 1 6 2  ovaries were 

extremely close to 5 .  0 mg . The only deviat ion . ( 3 .  6 + 0 .  6 )  

from this 5 .  o mg we ight occurred in the 1 0 -day pregnant 

control group ( B-B , Table 3 ) . Apparently , the amount o f  

regeneration , compensation , o r  hypertrophy o f  gra fted hal f 

ovaries seems to be equival ent between experimental and 

control groups . 
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The equivalent degree o f  ovarian regeneration i n  both 

genotypes is a s igni f icant observation for at least two 

reas ons . First , s ince the genotype o f  all ovary gra fts is  

gj a , the amount of regeneration or
. 

any differential patterns 

of regeneration must be due to host genotypes . Because 

there were no differences in regenerat ion o f  hal f ovaries , 

the A�/ a reproductive system appears to be as capable as the 

gj a  system in stimulating regeneration of gra fted hal f 

ovaries . S ince the maj ority o f  ovary regeneration occurs 

soon a fter grafting at 6 0 -9 0 days of age ( Schoess l er , 19 8 7 ) , 

the A�/a reproductive system o f  6 0 - 1 0 0  day females must be 

equ ivalent to that of 6 0 - 1 0 0  day gja females . In short , i f  

hypothalamic-pituitary les ions develop i n  AY/g females , such 

l es ions appear not to cause reproduct ive problems at 6 0 - 1 0 0  

days o f  age as j udged by regenerat ion ( compensation ) o f · hal f  

ovaries . S econd , s ince typ ical ovarian we ights for 6 0 - 9 0  

day AYj� and g/g ovaries are 3 . 0  mg ( Schoes sler , 1 9 8 7 )  the 

amount or degree of regeneration o f  hal f  ovaries which we igh 

approximately 1 . 5  mg at 6 0  days o f  age but which ultimately 

we igh about 5 . 0  grams at autopsy ( approximately 18 0 days of 

age ) is striking . Al so striking is  the fact that th� hal f 

ovaries seem to reach an opt imal or final we ight o f  

approximately 5 . 0  mg i n  both group s . 

Some indication of  the success of  the surgical 

technique is also given in Tab l e  2 .  O f  the 5 6  fema les , 

whose uteri were flushed , 8 0 . 3 % ( 4 5/ 5 6 )  conta ined ova . Th is 
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indicates that the ovary gra ft ing procedures were highly 

success ful . Of the 1 1 1  femal es origina l ly superovulated , 

2 2 . 5 % ( 2 5/ 1 1 1 )  were pregnant at day 1 0 . Jones and Krohn 

( 19 6 0 )  had a pregnancy rate o f  4 6 . 0 % .  Our l ower rate is  

probably due to the greater age of  our niice , andjor due to 

the inef ficiency o f  the yel l ow ( A�/g)  mouse ' s  reproductive 

system . However ,  as menti oned previously , cont inuity 

between ovary and oviduct existed in 8 0 . 3 % of the fema l es 

indicating success o f  the surgical technique . 

Table 3 provides information on the females that 

copulated a fter superovulation and were pregnant on day . 1 0 .  

For purposes o f  thi s  study , information on uteri and embryo 

development is  probably the mos t _ impo rtant . Although total 

uterine weights were not s igni ticantly different between the 

two groups , the numbers a re mathematica l ly distinct ive 

( 2 2 8 . 7  + 3 3 . 1 - mg for B-Y v .  3 6 5 . 8  + 8 2 . 4  mg for B- B ) ; in 

fact control uteri we ighed about 6 0 % more than B-Y uteri . 

Mean total deciduae were not d i f ferent between groups . Al so 

mean decidual we ights were also not s igni ficantly d i fferent . 

However , the mean dec idual we ights ( 2 6 . 0 ± 4 . 4  mg for B-Y v .  

4 1 . 4  + 6 . 5  mg for B- B )  exhib it a trend and would be 

. s igni f icantly dif ferent with larger n numbers . In fact , i f  

the ANOVA had been . conducted us ing the number o f  dec iduae ( n  

= 6 7  for B-Y and n = 7 5  for B-B )  instead o f  the number o f  

females ( n = 12 for B-Y and n = 13  for B-B)  , dec idual 

we ights would have been s igni ficantly d i fferent . 
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The ratio o f  mean uterine we ight per dec idua per female 

was s igni ficantly different between groups . Black (gj a )  

females had almost twice a s  much uterine we ight per dec idua 

( 7 6 . 1  + 1 1 . 9  mg ) than did the yell ow ( AYfs) females ( 4 5 . 5  ± 

6 . 6  mg) . This is an important result , because it puts the 

uterinejdec idua relationship on a s ingle dec idua bas i s . It 

provides an index o f  the extent o f - uterine tissue that can 

be recruited or " sequestered" during the dec idual i z ation 

response . 

The embryo analys is a l so yielded signi ficant 

d i fferences between groups . The mean semi tes per embryo 

were highly sign i ficantly di fferent ( P< 0 . 0 1 ) . The mean 

normal embryos were also s ign i f icantly different ( P< O . 0 1 )  

with 1 . 0  ± 0 . 4  for B-Y and 2 . 6  · + 1 . 0 for B-B mice . Mean 

abnormal embryos and mean retarded embryos were · not 

sign i ficantly -different , but ' a trend was ev ident ( Tabl e  3 ) . 

Other interesting results occurred in the study . For 

instance , the left ovary weight was s igni ficantly d i f ferent 

( P< O . 0 5 ) from the right ovary we ight in day _ 10 fema les 

( Tab le 3 )  . However , this resul t  did not occur in the 3 6 

hour p .  c .  females ( Table 2 )  , which had nearly ident ical 

_ ovary weights . Past research has indicated that the ovary 

we ights o f  the yel low (AYfg) fema les a re generally greater 

than the ovary weights of black (gja ) females ( Granholm et 

al . ,  19 8 6 ) . However , s ince both groups had bl ack ovaries in 

this study , we would not have expected any di fference . With 
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l arger n numbers we would probably f ind l ittle or no 

d i fference in the left ovarian weights and can probab ly 

conclude that it was s imply a sampl ing error and not a true 

biological variation . 

Day 1 0  pregnant females had mathematica l ly more mean 

fol l icles per female ( Tabl e  3 )  than did 3 6  hour post co itum 

mice ( Table 2 ) . The reason for this d i fference is not 

known , but it may be due to the d i fferent ages of the two 

groups . Mice in the 3 6  hour post coitum group had ages that 

averaged about 177  days whi l e  those in the day 10 group were 

about 1 2 0 - 1 3 0 days old . I t  would be reasonable to conclude 

that the d i fference was due to the pregnancy ; but during 

pregnancy , plasma LH and FSH a re at relat ively low · l evel s 

presumably inhib it ing the maturati on o f  any few fol l icles . 

Therefore , we would actual ly expect a lower mean numb·er o f  

fol l icles i n  the day 1 0  mice than i n  the 2 -day post co iturn 

mice . 

No stat ist ical differences in mean total dec iduae per 

femal e  were found . Both ·groups. had virtua lly ident ical 

numbers o f  dec iduae ( 5 . 6 + 0 . 8  for B-Y v .  5 . 8  ± 1 . 2  for B­

B } . The yel low ( A,Yjg_ ) uterus can sustain about the same 

. number of dec iduae as the bl ack ( g/ a ) uterus . Granholm and 

Brock ( 19 8 1 )  reported that black ( g/ a ) females in g/a x g/ a  

matings produce s igni ficantly ( P< 0 . 0 1 )  larger l itters ( 6.7 + 

0 . 2 ) than do yel low AYjg_ females in AYj a x g/g_ matings ( 5 . 8 

+ 0 . 2 ) . However ,  based on number o f  dec iduae , there do not 
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appear t o  be difrerences i n  number o f  progeny between B-Y 

and B-B females . However , there were 

d i f ferences in normal embryos between groups . 

s ign i ficant 

S igni f icant 

d i fferences between group s  such as mean uterine weight per 

dec iduae , mean somites per embryo , and mean normal embryos 

per femal e  suggest a hosti l e  uterine environment in B-Y · 

females . Other mathematical d i fferences though not 

s igni ficant also suggest a host i le uterine environment ( i . e . 

mean total uterine weight s , mean decidual weight s , mean 

retarded embryos , and mean abnormal embryos ) .  S ince only gj� 

and not AYfa embryos were present within AY/� uteri o f  B-Y 

fema les , d i fferences in reproductive success between . B-Y 

( experimental )  and B-B ( control ) . females must be due· to the 

host reproductive system and not to the presence of AYj a  

embryos . 

Wol f f  and Bartke ( 19 6 6 )  pos tul ated that a different ial 

intrauterine mortal ity o f  yel l ow embryos in yel l ow mothers 

may be a - maj or cause o f  the lower numbers o f  yel low 

wean! ings . The present study does not- necessarily 

contrad ict that study , but it does show that the yel l ow AYj� 

uterus is one of  the factors caus ing decreased reproduct ive 

·e fficiency in AYfa females . However ,  we can not rule out 

the possibil ity that the · AYfa embryos within AY/� uteri may 

have negative potent iat ing e f fect s . Studies by Granholm and 

Schoess ler ( in progress )  should clarify the relative 

contribut ions of AY/� embryos and AYja uteri in the observed 
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reduction in reproductive e f ficiency i n  yel low (AYj a ) 

females . By comparing the reproductive efficiency o f  

females in gj a  x gjg , gj a  x AYj a , and AYj a  x gjg mat ings , it 

should be possible to sort out maternal from embryo 

contributions during the decl ine in reproduction in AY-/s 

femal es ( Granholm and Schoess l er , in progress ) .  

S ince older AYj a  f emal e s  have a hostile uterine 

environment and also exh ib it irregular estrous cyc l es 

( Ka sten , 1 9 5 2 ; Granholm et a l . , 19 8 6 ) , de ficienc ies in 

ovarian steroids may occur . Numerous locations within the 

reproductive system play a rol e  in ovarian steroid synthes is 

and secretions . These l ocations and their respective roles 

in AY/s induced infert i l ity warrant further discuss ion . 

S ince other obese rodent syndromes ( e . g . , ob/ob , db/db , 

and fa/ fa ) have their reproductive problems traced to the 

hypothalamo-pituitary axis , AY-j a females may also have 

hypothalamo-pituitary les ions . Let ' s  look at the pituitary 

gl and first . 

The p ituitary gl and rel eases the gonadotrophins ( LH  and 

FSH ) which in turn el icit the product ion o f  estrogen by­

ovarian fol l icular cel l s .  The release o f  gonadotroph ins 

. depends upon 

synthes i z ed and 

gonadotrophin releas ing hormones 

released from the hypotha lamus . 

( GnRH ) 

S ince 

ovarian steroids depend upon proper 

gonadotroph ins , AY might cause a decrease 

endogenous gonadotrophins . Potential causes 

levels of 

in levels of 

for abnorma lly 
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l ow plasma gonadotrophins are numerous . For instance , the 

p ituitary gl and may s imply not be ab le to produce enough 
. 

gonadotrophins . or , the pituitary gland may not be able to 

respond appropriately to GnRH released from the 

hypothalamus . _Or ,  the hypothal amus may be incapable o f  

synthes i z ing and releas ing normal GnRH . Whatever the 

reason , the pituitary gl and cannot be ruled out as a 

possible s ite o f  AY-induced infert i l ity . 

There are methods to test overal l  functional integrity 

o f  AY.jg_ p ituitary glands . I nj ections of exogenous GnRH , 

fol l owed by radio immunoass ays (RIAs ) o f  plasma 

gonadotrophins as wel l  as assays o f  gonadotroph ins o f  

p ituitary tissues may a id i n  . determining the functional 

capab il ity o f  the AYjg_ pituitary gland . 

The hypothalamus also plays a ro le in ovarian stero ids 

by way of GnRH release which el icits the . release of  

p ituitary gonadotrophins . The hypothalamus is probably a 

more attract ive ·candidate for the AY les ion than the 

pitu itary gland , since it can be l inked to the · other e f fects 

caused by the lethal yel l ow gene ( i . e . temperature 

regul atory problems , obes ity , and aberrant pigment cel l 

·regulat ion ) . I f  the hypothalamus is unable to produce 

normal amoun.ts of GnRH , or i f  it is abnorma l ly sens it ive to · 

ovar ian steroids , gonadotroph in secretion would decrease and 

ult imately affect ovarian stero id l evel s .  However ,  s ince a 

progres s ive infertil ity ( Granholm et al . , 19 8 6 ) seems 
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evident , the hypothal amus i s  probably capable o f  produc ing 

normal amounts of  GnRH , at l east in young preobese or mildly 

obese AYja females . 

The pos s ib i l ity that the AYja hypothal amus may be 

overly sens itive to ovarian stero ids seems reasonable , s ince 

the ·hypothalamus is known to be abl e  to change its 

sens itivity to steroids ( i . e . , becomes l ess sensitive at 

puberty , a l l owing the secret ion of  GnRH , Vander et al . ,  

19 8 5 ) . This hypothal amus-sens itivity hypothes i s  might be 

tested by the use of  fert i l ity drugs . Clomiphene , a 

fert i l ity drug that reduces the hypothal amus ' sens itiv ity to 

c ircul at ing steroids , promotes an increase in GnRH , 

gonadotrophins , and ultimately ovarian stero ids ( Johnson and 

Everitt , 19 8 4 ) . Upon treat i ng AYf a  mice with clomiphene , a 

b io l ogical assay conducted on the ovary could yield 

important results . Restoration o f  ovarian act ivity 

fol l owing cl omiphene treatment of infert i l e  AYjg_ females 

would suggest that AYja does · influence sens itivity of  the 

hypothal amus to circulat ing ovar i an steroids . ·However ,  thi s  

study may b e  problematic , because it would b e  difficult t o  

interpret i f ,  after clomiphene treatments , n o  dif ferences i n  

. ovarian act ivity occurred . However , perhaps a combinat ion 

of biological assays ( ovarian act ivity ) plus RIAs ( GnRH , 

FSH , LH) · could yield de finitive data on the primary AY 

l es ion . 

S.ince AYj a infert i l ity seems to be assoc iated with 
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obes ity (Jeppesen , 19 8 5 ) , i t  would b e  worthwhi le to explore 

how obes ity affects infert i l ity .  Deslypere et al . ( 1 9 8 5 )  

concluded that fat t issue can act as a stero id reservo ir . 

Poss ibly ovarian steroids are being produced by fat cel l s , 

thereby disturbing their negative feedback effects on the 

hypothalamus and pituitary gl and . 

A number of  studies could be done to provide 

informat ion on the e ffects of obes ity on infert i l ity in A.Yj a  

mice . First , by · restricting the diets of  A,Yjg_ mice , it 

might be possible to prevent obes ity ; if A,Yjg_ mice cont inue 

to reproduce , one could conclude that obesity is caus ing the 

infertil ity .  

S econd , one could assay .fat t i ssue either for the 

presence of ovarian steroids or for the presence o f  enzymes 

that catalyze the product ion of ovarian stero ids . Analyz ing 

human fat , Des lypere et al . ( 19 8 5 )  report that human fat 

tissue contains relatively abundant amounts of aromatase and 

1 7 B-hydroxysteroid dehydrogenase ; they conclude the ir 

report , 

act ive 

" . . . The 

aromatase 

fact 

as 

that fat tissue ( human·) 

wel l  as an even more 

hydroxystero id dehydrogenase , and taking into 

·large fat tissue mass , explain the important 

tissue as a s ite of  estrogen format ion" . 

conta ins an 

act ive 1 7 B-

account the 

role o f  fat 

Johnson and 

Everitt ( 1 9 8 4 ) display the fol l owing interconvers ions o f  

stero ids : 



Aromatase 

Androstenedione - - - - - - - - - - - - - - -� Estrone 

1 7B-hydroxysteroid dehydrogenase 
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Estrone - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -) Estradi ol 1 7 B .  

Perhaps A�/a females undergo a progressive decl ine in 

reproductive e fficiency · commensurate with an increase in fat 

depos ition , because large amounts of fat-derived estrogens 

s imply overwhelm the hypothal amus ( and pituitary )  v i a  

pos itive feedback . The pos itive feedback o f  estrogen on the 

hypothal amus shuts down synthes is and rel ease of GnRH . 

Pituitary gonadotrophins are neither released nor act on the 

ovaries to promote fol l iculogenesis . Thus , A�/s- induced fat 

depos ition , which results in extraordinarily high plasma 

l evel s  of estrogen , causes infert i l ity . 

In their review o f  causes o f  the yellow mouse syndrome , 

Wol f f  et al . ( 19 8 6 )  state that an el evated insul in l �ve l , 

due e ither to islet cel l hyperp l as i a  or obes ity- induced 

peripher·al insulin res istance , is a common feature of AYY 

and A� express ion . Apparently , 

l ipogenes is , inhibits l ipolysis , 

e l evated insul in st imulates 

and l eads to obes ity and 

insu l in res i stance . Perimetria! adipose t issue from yel l ow 

· mice was more resistant to insul in st imulation of  glucose 

oxidation than that from agouti ( nonyel l ow) mice ( Frigeri et 

a l . ,  1 9 8 3 ) . Wol ff et al . ( 1 9 8 6 }  make the fol l owing 

statement regarding the primary l es ion o f  yel l ow mice , " · · ·  

we propose that el evated insul in l evel s  and associated 



7 5  

anabol ic bias are · fundamental t o  the yel low mouse syndrome " . 

Although Wol ff et a l . ( 1 9 8 6 )  postul ate that elevated 

insul in is fundamental to the yel l ow syndrome , data o f  

Frigeri e t  al . ( 19 8 3 ) show that p lasma insul in l evel s  o f  

yel low mice are not elevated above those of nonyel l ows unt i l  

3 -5 weeks of  age regardless o f  sex . S ince yel l ow · gene-

induced differences in coat color patterns are obvious at 

one week of  age , it seems unl ikely that increased plasma 

insul in causes aberrant pigmentation . Accordingly , clues to 

the fundamental yel l ow gene l es ion might be obta ined by 

examining the metabol ism o f  hair bulb pigment cel l s  in 

yel l ow ( AVY; - and A�/ - )  and nonyel l ow mice . 

Interest ingly , hair bulb p igment cel l s  of . agouti ( A/A)  

and other nonyel low mice ( such as gj,g or bl ack) display 

three el ectrophoret ic variants ( i sozymes ) of tyros inase , 
-

whi l e  yel low mice display only one ( Holstein , et al . ,  19 7 3 ) . 

Refl ecting on this observation , Pawel ek and Korner ( 1 9 8 2 ) 

made the fol lowing provocative comment , " S ince the 

mul t iple forms of tyros inase result from glycosylat ion 

react i ons , it seems possib l e  that there is a disturbance in 

protein glycosyl ations in mice of thi s  (yellow)  genotype . 

· As an example , both obes ity and �orne forms of  diabetes in 

humans have been traced to de fects in insul in · receptors --

insul in receptors are glycoprote ins " .  Al so , Tamate and 

Takeuchi ( 19 8 4 )  suggest that an aberrant alpha-mel anocyte 

stimul ating hormone ( a lpha -MS H )  receptor on the surface o f  
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hair bulb p igment cel l s  may be the result o f  a mutation 

( recess ive yel l ow mutation ) at the extens ion locus . Perhaps 

induces aberrant receptors on adipocytes which 

s econdarily alter the regulat i on o f  adipocyte metabol ism 

enhanc ing l ipogenes is and fat depos ition . However , 

fol l owing reciprocal adipocyte grafts in yel l ow and 
. 

nonyel low mice , Meade et a l . ( 19 7 9 ) showed that genet ica l ly 

yel l ow adipocyt�s responded to circul ating factors in 

nonye l l ow hosts by shrinking in volume to that of nonyel l ow 

host adipocytes . But , s ince perimetria! adipose tissue o f  

yel low mice was more res istant t o  insul in stimulat ion o f  

glucose oxidation than adipose tissue o f  nonyel l ow mice 

( Frigeri et al . I 19 8 3 ) ' perhaps insul in receptors are in 

fact defective on adipocyte cel l surfaces of  yel low mice . 

An aberrant insul in receptor hypothes is should be readily 

testabl e .  

To summarize , infert i l ity in AYj a  femal es may be caused 

by pos itive feedback of estrogen to the hypothal amo-

pituitary axis essential ly shutt ing down the synthes i s  and 

rel ease of pituitary gonadotrop ins ; Increased estrogen 

l eve l s  in turn may be caused by greatly increased stores o f  

fat as AYjg_ females mature . And , _the fat may be the result 

o f  AY-induced elevation in circu� ating insul in level s and/or 

an AY- induced glycosylation de fect in adipocyte cel l surface 

receptors which abrogates the normal equil ibrium between fat 

depos�t ion ( l ipogenesis ) and fat breakdown ( l ipolys i s ) . 
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RIAs of estradiol 1 7 B  ( E2 ) and progesterone i n  mice o f  

d i fferent ages , weights , and reproductive status shoul d  

provide adequate data t o  test the "high estrogen-positive 

feedback" hypothes is of A�- induced infert i l ity . Presumably , 

total fat , estrogen concentration , and infert i l ity ought to 

be strongly correl ated . 

Alternatively , treatment o f  obese AYja femal e s  with 

c lomiphene might be instructive . S ince clomiphene has 

antiestrogenic properties and makes the hypothal amus l es s  

sens itive t o  estrogens , a n  improvement i n  the reproduct ive 

status of obese A,Yjg_ females would be cons istent with the 

" high estrogen-positive feedback" hypothes is . 

Third , it might be pos s ib l e  to surgical ly remove the 

fat tissue from the obese mice ( i . e . ovarian fat depots ) and 

see i f  they could return to an active reproduct ive state . 
-

one could conduct uni lateral and b ilateral ovarian - " fat 

padectomies " of obese AYj a  femal es and mon itor the effects 

on · reproductive activity . One _could also put obese 

reproductively-depressed mice on restricted diets and_ 

monitor reproduct ive act ivity . 

Fourth # s ince AYjg mice become obese , the bal ance 

· · between depos its and withdrawal s  of fat from adipocytes is 

shi fted drast ica l ly to the deposit s ide of the equ i l ibrium . 

Perhaps one or more of the en z ymes respons ib l e  for the 

hydro lys is of  intra-adipocyte - triglycerides is ( are ) 

de fect ive in AYfg females . . Alternat ive ly , ·  there may exist 
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AY- induced membrane andj or structural abnormal ities o f  the 

smooth endoplasmic reticulum within those SER compartments 

respons ible for triglyceride breakdown to fatty acids and 

glycerol ; Wol ff et al . ( 1 9 7 8 ) suggested that structural 

defects in the endoplasmi c  reticulum of mel anocytes coul·d 

account for aberrant p igmentation in yel l ow mice . 

Fi fth , receptors on AYj a  adipocytes may be de fect ive . 

Fawcett ( 19 8 6 }  discusses the mode o f  hormone interact ion 

with adipocytes ; plasma membranes of adipocytes posses 

spec i f ic receptors for a number o f  hormones including ACTH , 

TSH , LH, and epinephrine . Hormones act ivate cytopl asmic 

l ipases within adipocytes via receptors , adenylate cycl ase , 

cycl ic AMP , and ultimately organ-speci f ic protein kinases 

( the series of inductions termed " second message" ) . The 

amount of intra-adipocyte triglyceride · broken down into 

fatty ac ids and glycerol depends upon the overall effic iency 

and funct ional capabil ity of  the ent ire " second message " 

inductive system from outer cel l surface receptor to the 

protein kinase activat ion o f  spec i fic l ipases . Perhaps AY 

causes de fects in one or more o f  these steps ; AY may bl ock 

the receipt of  speci fic hormones such as alpha-MSH in 

p igment cel ls ( see thes is of Japs , . 1 9 8 7 ) . 
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CONCLUS IONS 

Results presented in Exp eriment 1 document that AY.ja 

ovaries are . indeed functional when pl aced in 

environment such as gja fema l es � · Int-erestingly , 

a proper 

one AY.j a 

host produced six l itters , which has never occurred in our 

colony . However , this AY.ja femal e  never became obese , 

suggesting that obes ity may play a role in the AY.ja 

infert i l ity . There is nothing intrins ical ly de fective with 

A_Y.ja ovaries . 

Results presented in Experiment 2 document that AY.ja 

reproductive systems cause a decl ine in reproduction 

independent of the pos s ib l e  potent iating effects · of AY.j a 

embryos .  

The reproduct ive process is  a complex scheme o f . events 

relying on - the intricate interp l ay between deve loping 

embryos and the endocrine mil ieu o f  the reproductive tract . 

It seems to be a recurrent theme that an endocrine imbal ance 

exists within the AY.ja mouse . The results of  these studies 

tend to support that theme . However , the role that obesity 

may play in this hormonal imbalance should not be overl ooked 

and probably should be the focus of future stud ies in A_Y.­

induced reproduct ive senescence . 
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Geno t y pe and to to to to t o  t o  t o t o 
D e s i s na t i on h t  L i t t e r  2nd 3 r d 4 t h  5 t h  6 t h 7 t h  6 t h  9 t h  

. 
B - 8

3 -b 

8 - B  -

B - B -

B - 8 4 7  25 22 55 22 23 
8 - B  2 2  20 1 32 4 7 2 7  
8 - B  30 25 70 25 3 1  
B - B 26 2 1  2 4  
B - B  . 4 0  20 25 
8 - 8 2 1 2 1  
8 - 8 -

8 - B  2 1  2 1  24 19 
B - 8  5 4 33 2 1  1 9  2 4  
B - B -

B - B  4 0  
B - 8 2 9  2 1  2 1  30 22 2 1  
B - B  -

Y - Y
0 

2 2  2 7  2 0  
Y - Y  2 3 
Y - Y  2 0  24 2 1  
Y - Y  35 
Y - Y  50 2 5  
Y - Y  34 20 
Y - Y  2 3  20 22 
Y - Y  26 2 2  

Y - Y  -

Y - Y  2 1  
Y - Y. 

A & •  o f  Da• 
a t  

Ova r y  G r a f t i n a  

6 3  !. 7 day& 
63 !. 7 day& 
63 !. 7 day& 
63 !. 7 days 
63 !. 7 day• 
55 !. 5 days 
5 5  !. 5 day& 
5 5  !. 5 day• 
61 !. 2 days 
6 1  !. 2 d a y s  
6 1  !. 2 day& 
66 !. 2 days 
66 !. 2 day& 
66 !. 2 day1 
61  !. 3 d a y s  
6 1  !. 3 d a y s  
63 !. 7 d a y &  
63 !. 7 d a y s  
63 !. 7 d a y s  
63 !. 7 d a y s  
63 !. 7 days 
5 5  !. 5 days 
5 5  !. 5 days 
5 5  !. 5 d a y s  
6 1  !.. 2 day s 
6 1  !.. 2 d a y s  
6 1  !. 2 d a y s  

(l) 
m 
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1 - 1 - 1 0  Y - B 23 2 1  
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1 - 3 - 6  Y - B  :-
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1 - 5 - 9 Y - B  2 3  
1 - 5 - 1 0 Y - B  29 2 3  
1 - 1 - 1 1  B - Y 8 -
1 - 1 - 1 2 B - Y  46 
1 - 1 - 1 3 B - Y  4 3 30 
1 - 1 - 1 4 B - Y  2 3  2 0  
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Number gf d��� ! l �es e d  ��t wt!D 

2 n d  3 r d  4 t h  5 t h  6 t h  
t o  t o  t o  t o  t o  
3 r d  4 t h  5 t h  6 t h  7 t h  

20 

35 

4 6  52' 3 1 24 
22 3 6  39 24 27 

40 50 24 42 2 5  

2 0  2 4  2 2  2 1  2 3 

2 9  20 24 77 2 3 

2 5 

II t t eu 

7 t h  8 t h  
t o  t o  
8 t h  9 t h  

55 

44 2 2  

A & e  o f  Da• 
a t 

Ova r y  G r a f  t i  n 1  

66 !. 2 days 
66 !. 2 days 
66 !. 2 days 
6 1  !. 2 days 
6 1  !. 2 d a y s  

6 3  !. 7 d a y s  

6 3  !. 7 d a y s  
6 3  !. 7 d a y s  
6 3  !. 7 d a y s  

6 3  !. 7 d a y s  

55 !. 5 d a y s  
5 5  !. .5 d a y s  

55 !. 5 d a y s  
6 1  !. 2 d a y s  
6 1  !. 2 d a y s  
6 1  !. 2 d a y s  
66 !. 2 d a y s  
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66 !. 2 d a y s  
6 t  !. 3 d a y s  
6 1  !.. 3 d a y s;  
6 1  !. 3 d a y s  
6 1  !. 3 d a y s  

6 3  !. 7 d a y s  
6 3  !. 7 d a y &  
6 3  !. 7 d a y s  
6 3  !. 7 d a y s  

(ll 
-..J 
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b 

c 

d 
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I d e n t  i t  i ca t i o n Geno t y pe 
N u m b e r Des i c na t i on 

. 1 - 1 - 1 5 B - Y 
. 1 - 2 - 4  B - Y 

1 - 2 - 5  B - Y 
1 - 2 - 6  B - Y 
1 - 3 - 7 B - Y  
1 - 3 - 8 B - Y 
1 - 3 - 9  B - Y 
1 - 4 - 4 B - Y  
1 - 4 - 5  B - Y 
1 - 4 - 6 B - Y 
1 - 5 - 3 B - Y 
1 - 5 - 4

f 
B - Y  

1 - 5 - 5  B - Y 
l - 5 - 6  B - Y 

e_l e_ o v a r i e s  c r a f t e d  t o  e_/ e. hos t s  

- n e v e r  h a d  a J i t t e r  

Pa i r i n & 
a nd 

1 s t  L i t t e r  

36 

23 

34 

!!.' l e.  o v a r i e s g r a f t e d  t o  !!.' I e. h o s t s  

!!.' I e. o v a  r i e s g r a f t e d  t o  e./ e. h o s t s  

e_l e_  o v a r i e s c r a f t e d  t o  �· l e_ h o s t s  

f e m a l e  d i e d d u r i n g s u r g e r y  
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Hum b er ot d!�& e l 2es e d  bi1Wi!D 
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t o  t o  t o  t o  t o  t o  
2nd 3 r d  4 t h  5 t h  6 t h  7 t h  

2 1  

2 2  2 4  49 25 24 

l i t t e r s 

7 t h  6 t h  
t o  t o  
6 t h  9 t h  

A c e  o f  Da.• 
a t  

O v a r y  G r a  f u·n a  
6 3  ±. 7 d a y s  
55 ±. 5 d a y s  
55 ±. 5 d a y s  
55 ±. 5 d a y s  
6 1  ±. 2 d a y s  
6 1  ±. 2 d a y s  
6 1  ±. 2 d a y s  

66 !. 2 d a y s  
66 !. 2 d a y s  
66 ±. 2 d a y s  
6 1  ±. 3 d a y s  

6 1  ±_ ·3 d a y s  
6 1  ±. 3 d a y s  

Ol 
Ol 



!'l o u s e  

l d e n t i t  i c a t i o n  
N u 111 b e r  

1 - 1 - 1 6 

1 - 1 - 1 7  
1 - 1 - -1 6  
1 - 1 - 1 9  

1 - 1 - 20 
1 - 2 - 1 
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5 5 

3 2 
7 1 

7 1 
6 6 
2 2 

3 3 
3 0 

3 0 

4 0 

6 0 
4 4 

4 4 

6 4 
6 6 

5 5 
2 2 
4 0 

l & t  
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0 
0 

0 

0 

0 

0 

4 

2 

APPEND I X  I I . RAW DATA FROH EXP�R I HENT I .  

2 n d 3 r d  4 t h  
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4 0 0 4 6 5 0 1 4 0 0 4 4 
1 5 0 0 5 5 0 0 5 4 4 3 
6 3 3 4 0 0 4 5 1 0 4 2 
6 6 0 0 6 3 3 

6 0 0 6 4 4 
5 5 

4 0 0 4 4 1 0 3 3 3 
3 1 0  4 0 6 1 1  1 1  9 0 0 9 3 

3 

4 3 3 4 1 0 3 5 2 0 3 7 

2 7 7 7 3 3 

4 1 1 2 2 2 

7 7 
5 5 
5 3 1 1 6. 3 1 2 

2 4 4 

L I TTER S I ZE AND GENOTYPE DATA 

L I TTERS 
5 t h  6 t h  7 t h  

b c d a b c d a b c 

2 0 2 2 0 0 2 
0 0 3 
2 

3 

3 0 4 6 2 0 4 

8 t h  
d a b c d 

9 t h  
a b c d 

•:ll 
•:0 
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1 - 4 - 1 0 
1 - 4 - 1 1  

1 - 4 - 1 2  

1 - 5 - 1 1  

1 - 5 - 1 2  4 4 4 1 1 2 
1 - 1 - 6 4 1 2 1 3 3 4 
1 - 1 - 7 2 2 3 3 
1 - 1 - 6 

1 - 1 - 9 4 1 2 1 7 3 2 2 6 
1 - 1 - 1 0 4 '  1' 2 1 5 5 
1 - 2 - 7 4 0 2 2 3 0 .1 2 6 
1 - 2 - 8 2 2 5 2 0 3 3 
1 - 2 - 9 5 3 0 2 
1 - 3 - 4  7 2 5 0 3 3 6 
1 - 3 - 5 

1 - 3 - 6  

1 - 4 - 7  
1 - 4 - 8 2 2 5 1 1 3 3 
1 - 4 - 9 2 2 
1 - 5 - 7 4 0 1 3 ::i 3 6 

APPEND I X  I I CONT I NUED 

L I TTERS 
3 r d  4 t h  5 t h  

b c d a b c d a b c d 

1 1 . 2 

0 6 0 

1 0 5 4 1 0 3 3 2 1 0 
3 5 0 1 " 6 1 1 6 

0 3 3 9 0 4 5 9 2 3 4 

3 3 1 1 1 6 2 1 3 

0 1 5 7 1 3 3 6 6 

6 t h  
a b c d a 

3 0 0 3 
6 6 5 

8 1 2 5 3 

7 3 3 1 3 

6 1 1 4 3 

7 t h  6 t h  
b c d a b 

0 3 2 

3 3 0 

3 4 1 

3 

c d a 

0 ·3 

2 1 3 

9 t h  
b c 

3 

d 

(f) 
0 



APPEND I X  I I  CONT I NUED 

M o u s e  L I TTERS 
l d e n t i f i c � t i o n 1 s t 2 nd J r d  4 t h  5 t h  6 t h  7 t h  6 t h  9 t h  

N u m b e r a b c d a b p d • b c d • b c d • b c d • b c d a b c d • b c d • b c d 

1 - 5 - 6 4 4 6 6 
1 - 5 - 9  5 0 3 2 
1 - 5 - 1 0 7 2 1 4 4 4 
1 - 1 - 1 1  
1 - 1 - 1 2 4 4 
1 '- 1 - 1 3  8 5 0 3 7 0 0 7 
1 - 1 - 1 4 4 4 7 1 0 6 6 6 
1 - 1 - 1 5 4 4 3 1 0 2 
1 - 2 - 4 
1 - 2 - 5  
1 - 2 - 6  3 0 0 •3 3 1 0 2 4 2 0 2 5 3 0 2 4 2 0 2 2 0 0 2 

. 1 - 3 - 7 
1 - 3 - B  
1 - 3 - 9  
1 - 4 - 4  
1 - 4 - 5  

1 - 4 - 6 

1 - 5 - 3  
1 - 5 - 4 t 

1 - 5 - 5  2 2 
1 - 5 - 6 

a 
L i t t e r  s i z e 

b 
N u m b e r o f  n e o n a t e s  t h a t  d i e d b e f o r e  c o n f l r • a t l o n o f  t he 1 e n o t y pe 

c 
N um b e r  o f �· � �  n e o na t e s  

d N u m b e r  o f  �� � n e o na t e s  

e - n e v e r  had a l i t t e r  
f e m a l e  d i e d d u r i n & s u r g e r y  

(0 
..... 



APPEND I X I I I . RAW 
t
iATA FROH EXPER I �ENT I .  

Hou & e  I D  Gr a f t l n t  A ae a t  E x o a enou •  Fe•a l e  
Nuabe r Type T r e a taent w t .  < a >  

1 - 1 - 1 7 B - B  330 !.. 7 day• 29 . 2  
1 - 1 - 1 8  B - 8 330 !.. 7 d a y •  3 1 . 7 
1 - 1 - 1 9 B - B 4 4 3  !.. 7 day• 32 . 9  
1 - 1 - 20 8 - 8  4 4 3  !.. 7 d a y •  29 . 1  
1 - 2 - 2  8 - 8  3 2 4  · !.. 5 day• 26 . 1  
1 - 3 - 1 1  8 - B 296 !.. 1 day 3 1 . 6  
1 - 3 - 1 2  8 - 8 296 !.. 1 day 29 . 3  
1 - 4 - 1 B - B  3 6 4  !.. 2 day• 36 . 6  
1 - 4 - 2 B - B  278 !.. 2 d a y •  26 . 1 
1 - 5 - 1 8 - 8 300 !.. 2 d a y •  35 . 0  
1 - 1 - 1  Y - Y  330 !.. 7 d a y •  57 . 0 
J - 1 - 2 Y - Y 330 !.. 7 d a y •  44 . 1  
1 - 2 - 1 0  Y - Y 270 !.. 1 day 4 6 . 9  
1 - 2 - 1 2  Y - Y 270 !.. 1 day 4 6 . 9  
1 - 3 - 2  Y - Y  2 4 7  !.. 1 day 52 . 9  
1 - 3 - 3  Y - Y 2 4 7  :_ l day 39 . 5  
1 - 4 - 1 1  Y - Y  278 !.. 2 d a y •  4 6 . 2  
1 - 5 - 1 1  Y - Y  229 !.. 2 day• 5 5 . 9  
1 - 5 - 1 2  Y - Y  300 !.. 2 d a y •  3 4 . 5  
1 - 1 - 1 3  B - Y  330 !.. 7 d a y •  39 . 2  
1 - l - 1 5 B - Y 330 !.. 7 day• 56 . 9  
1 - 2 - 4  B - Y  2 7 0  !.. 5 d a y •  56 . 6  

EXOGENOUS GONADOTROPH I N  TREATHENT DATA
a 

Copu l a t o r y  R l t h t o v a r y  Le f t  o v a r y  
p l u a < +  o r  - ) w t . < • a > w t .  < •a )  

- 1 . 2  3 . 2 
- 2 . 0 7 . 5 
- 4 . 7 1 . 3  
- 5 . 9 3 . 6 
- 6 . 3 �· 5 
- 6 . 0 
- 3 . 7 1 . 5  
- 1 . 2  1 . 4  
- 0 . 7 1 . 5  
- 5 . 6 4 . 4 
- 5 . 8 3 . 4 
- 2 . 7 2 . 9 
- 1 . 9  6 . 7 
- 4 . 7 4 . 2 
- 4 . 3 3 . 2 
- 2 . 0 5 . 0 
- 4 . 7 5 . 6 
- 2 .  1 2 . 5 
- 4 . 0 4 . 4 
- 2 . 3 7 . 7 
- 1 . 0  6 . 7 
- 6 . 2 2 . 3  

U t e r u •  
w t . < • t )  

1 00 . 0 

5 8 . 1 
44 . 0  
34 . 2  
33 . 5  
34 . 0  

9 3 . 5 
32 . 1 
52 . 3  
43 . 9  
4 7 . 5  
3 1 . 0  
29 . 0 
6 5 . 1  
35 . 9 
2 7 . 9  
33 . 5 
78 . 1 
23 . 1  
33 . 5  
37 . 0  
4 9 . 4  

(() 
N 



House I D  Le f t  Ovar� R i 1 h t  Ovaty 
Nu•b• r Fo i l t e l • • F o l l i c l e & 

1 - 1 - 1 7  1 3 + 6 - 1 2  
1 - 1 - 1 6  1 3 + 6 - 1 2  
1 - 1 - 1 9  1 3 + 1 3 + 
1 - 1 - 20 6 - 1 2  1 3 + 
1 - 2 - 2  6 - 1 2  6- 1 2  
1 - 3 - 1 1  - 1 3 + 
1 - 3 - 1 2  0- 5 1 3 + 
1 - 4 - 1 6 - 1 2  6 - 1 2  
1 - 4 - 2  6 - 1 2  6 - 1 2  
1 - 5 - 1 1 3 + 1 3 + 
1 - 1-- 1 6 - 1 2  1 3 + 
1 - 1 - 2 0- 5 6 - 1 2  
1 - 2 - 1 0  1 3 + 6 - 1 2  
1 :.. 2 - 1 2  1 3 + 1 3 + 
1 - 3 - 2 6 - 1 2  1 3 + 
1 - 3 - 3  1 3 + 6 - 1 2  
1 - 4 - 1 1  6- 1 2  6 - 1 2  
1 - 5 - 1 1  1 3 + 6 - 1 2  
1 - 5 -' 1 2  1 3 + 1 3 + 
1 - 1 - 1 3  1 3 + 6 - 1 2 
1 - 1 - 1 5 6 - 1 2  0 - 5  
1 - 2 - 4  0- 5 0- 5 

Le f t  O v a r y  
Ova0 

0 
4 
0 
0 
3 
-
1 
0 
5 
0 
1 
0 
0 
1 
0 
1 
8 
4 
0 
0 
1 
0 

R l 1 h t  Ovary 
Ova0 No r•a l 

0 0 
3 0 
0 0 
0 0 
2 1 
1 1  -
4 0 
0 1 
1 2 
0 0 
2 5 
0 1 
1 0 
0 0 
0 1 
0 0 
4 0 
3 0 
0 0 
0 4 
0 0 
0 0 

L.IU Ov lshag!:d 

Abnor•a l • To t a l Nor•a l 

0 0 0 
0 0 2 
0 0 0 
0 0 0 
0 1 2 - - 5 
0 0 8 
0 1 2 
0 2 1 
0 0 7 
0 5 1 
0 1 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0 
0 0 6 
0 ·o 2 
2 6 0 .  
0 0 0 
0 0 0 

Bllb� ���lii!.IS2�d 

Abno r•a l • Tot a l 

0 0 
2 4 
0 0 
0 0 
0 2 
0 5 
0 8 
0 2 
0 1 
0 7 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 6 
0 2 
1 1 
0 0 
1 1 

(() 
(A) 



APPEND I X  I l l . CONT I NUED 

M o u s e  I D  G r a f  t i  n1 A I &  a t  E x ocenous fe•a l e  Copu l a t o r y 
Numbe r Type T r e a t •ent w t . < 1 ) p l u a < + or - >  

1 - 2 - 5  B - Y 270 ±. 5 day• 3 1 . 4  -
1 - 3 - 7 B - Y 2 4 7  ±. 1 day 47 . 4  -
1 - 3 - 8 B - Y 2 4 7  ±. 1 day 5 1 . 9 -
1 - 3 - 9  B - Y 2 4 7  ±. 1 day 55 . 6  -
1 - 4 - 4 B - Y 278 ±. 2 day• 55 . 1  -
1 - 4 - 5  B - Y  278 ±. 2 day• 4 9 . 5  -
1 - 4 - 6 B - Y 276 ±. 2 day• 44 . 7  -
1 - 5 - 3 B - Y 229 ±. 2 days 40 . 5  -
1 - 5 - 5 B - Y  229 ±. 2 days 45 . 6  -
1 - 5 - 6 B - Y  229 ±. 2 day• 36 . 4  -
1 - 1 - 6 Y - B  330 ±. 7 days 30 . 6 + 
1 - 1 - 7 Y - 8 4 4 3  ±. 7 day• 29 . 9  -
1 - 2 - 7 Y - B 406 ±. 5 days 30 . 1 -
1 - 2 - 6 Y - 8  406 ±. 5 day• 34 . 7  -
1 - 3 - 4 Y - 8  3 6 4  ±. 1 day 37 . 5  + 
1 - 3 - 5  Y - 8  2 4 7  ±. 1 day 2 1 . 6 -
1 - 3 - 6 Y - 8  296 ±. 2 days 29 . 5  -
1 - 4 - 7  Y - 8  2 78 !. 2 d a y 5  26 . 4  -
1 - 5 - 7  Y - 8  300 !. 2 d a y s  3 4 . 3 -
1 - 5 - 8 Y - 8  300 !. 2 d a y s  3 2 . 4 -

J - 5 - 1 0 Y - 8  229 !. 2 d a y s  3 1 . 1  -

R t c h t  O v a r y  Le t t  O v a r y  
w t . < • l > w t . < • a > 

1 . 5  1 . 3  
2 . 6  3 . 4 
3 . 8 3 . 3 
1 . 7  6 . 6 
9 . 5 5 . 5 
8 . 0 2 . 3 
5 . 7 4 . 9  
3 . 1 3 . 9 
1 . 6  7 . 9 
6 . 1  �to 
3 . 6 
3. 2 2 . 0 
2 . 3 2 . 6 
0 . 6 1 . 2  
1 . 6  2 . 0 
3 . 1 4 . 5 
0 . 5 � 1 . 6  
1 . 2  2 . 4 
4 . 3  1 2 . 9 
5 . 4  1 . 2  
0 . 6 2 . 6 

· U t e r u •  
w t . < • a >  

20 . 9  

5 0 . 4 
52 . 4  
55 . 6  
56 . 7  
4 3 . 1 
44 . 7  
47 . 7  
46 . 2  
3 1 . 3  
34 . 9 
46 . 7  
56 . 5  
32 . 3 
82 . 6  
56 . 2  
56 . 4  
72 . 9  

104 . 6  
36 . 7  
3 2 . 2  

(0 
� 



M o u s e  I D  
N u 111 b e r  

Le f t  O v a r t 
Fo l l i c l e s 

H i g h t  Ova � y 
Fo l l i c l e s 

L e t t  O v a r y  
O v a

c 
R i g h t  gv a r y  

O v a  N o r ma l 

1 - £ - 5  6 - 1 2  0 - 5  0 1 0 
1 - 3 - 7  6 - 1 2  0 - 5  0 2 0 
1 - 3 - 8 1 3 + 6 - 1 2  0 1 1 
1 - 3 - 9  1 3 + 6 - 1 2  4 0 4 
1 - 4 - 4  6 - 1 2  0 - 5 1 0 1 
1 - 4 - 5  6 - 1 2  1 3 + 2 3 1 
1 - 4 - 6 1 3 + 1 3 +  3 3 0 
1 - 5 - 3  6 - 1 2  6 - 1 2  8 4 0 
1 - 5 - 5 6 - 1 2  1 3 + 0 3 0 
1 - 5 - 6 1 3 + 6 - 1 2  2 6 0 
1 - 1 - 6 - 1 3 + 0 0 0 
1 - 1 - 7 1 3 + 1 3 + 0 0 0 
1 - 2 - 7 1 3 + 1 3 t  0 0 0 
1 - 2 - 8  6 - 1 2  6 - 1 2  0 0 0 
1 - 3 - 4 1 3 + 1 3 t  0 0 0 
1 - 3 - 5  6 - 1 2  0 - 5  0 0 1 
1 - 3 - 6 6 - 1 2  1 3 t 6 3 8 
1 - 4 - 7 6 - 1 2  6 - 1 2  4 2 1 
1 - 5 - 7  1 3 t  1 3 + 0 0 8 
1 - 5 - 8  1 3 + 1 3 + 0 0 2 
1 - 5 - 1 0  0 - 5  0 - 5  0 0 0 

5 . 0 I .  u .  P M S  f o l l o wed 4 8 ho u r s  l a t e r  b y  5 . 0  I .  u .  HCG . 

b 
Numbe r o f  t o l  l i c l e & p r e s e n t  w h e n  ova r y  s c o r e d  v i s ua l l y . 

c 
Numbe r o f  r e l e a s e d  t o l  l ow i n g mec ha n i ca l " pu n c h i n g "  o f  o va r y .  o v a  

d 
N um b e r o f  r e l e a s e d a f t e r  t l u s h i n g o v i duc t s .  o va 

e V e s i c u l a t e d  o r  g r a n u l a r  o v a  w e r e  s co r ed a s  a b no r ma l .  

O v a r y  w a s  n o t  p r e s e n t .  

g O n e  2 - c e l l  e m b r y o  wa s p r e s e n t  a f t e r  f l u s h i n g o v i d u c t s .  

Le f t O v i d uc t
d 

Ab no r aa l 8 T o t a l No r ma l 

0 0 0 
0 0 0 
0 1 2 
0 4 0 

0 1 0 

0 1 0 
0 0 2 
0 0 0 
0 0 6 
0 0 1 I 
0 0 0 
0 0 0 
0 0 2 
0 0 0 

0 0 1 
0 1 0 

0 8 0 

0 1 0 

0 8 3 

0 2 0 

0 0 0 

Right O v t d uct
d 

A b n o r aa l 8 · To t a l 

0 0 
0 0 
0 2 
0 0 

· o 0 
0 0 
0 2 
0 0 
0 6 
0 l 
1 1 
0 0 
0 2 
0 0 
0 1 g  
0 0 

0 0 
0 0 

0 3 
0 0 

0 0 

(() 
(11 



APPEND I X  I V .  

Mou s e  I D  Ova r y - Hos t P l u a a f t e r  Had 
N u m b e r  Comb i na t i on Pa i r i n a L i t t e r ?  

1 - 1 B - Ba + No 
1 - 2 H - B b t Y e s  
1 - 3 B - 8  

1 - 4 8 - Y  

1 - 5  B - 8  - Y e s  
1 - 6 8 - Y  + Y e s  
1 - 7 8 - B  

1 - 8 B - Y t Y e s  
1 - 9 8 - 8  t No 
1 - 1 0 B - Y  

1 - 1 1  B - B  - -
1 - 1 2 B - Y  + Y e s  
1 - 1 3 B - 8  t Y e s  
1 - 1 4  B - Y  t No 
1 - 1 5  B - B  t No 
1 -. 1 6  B - Y  t No 
1 - 1 7  B - 8  t ;t e s  
1 - 1 8  B - Y  t No 
1 - 1 9  B - 8  + No 
1 - 2 0  B - Y  

1 - 2 1  B - 8  + Y e s  
1 - 2 2  B - Y  + Y e s  
1 - 2 3  B - B  + Y e ,  
1 - 2 4  B - Y  

RAW DATA FRO� EXPER I MENT I I . COPULAT O R Y  P LUG DATA 

Nu•be r  o f  P I U I 
Nu11 b e r y o u n a  G e no t y p e s a f t e r P r e a na n t 

o f  y o u n a  t ha t  d i ed o f  y o u n a  t a t  s . o . Day 1 0 ?  

t Y e s  
5 1 A l l B i k

e t Y e s  

4 4 

3 0 A l l B l k  

2 0 A l l B l k  

t Y e s  
6 3 A l l B l k  t Y e s  
3 3 

t Y e s  

5 0 t Y e s  
t No 

4 0 A l l . B l k  t Y e s  
4 4 t Y e s  
3 0 A l l a· • k t Y e s  

P l u1 
a f t e r  
2 n d  5 . 0 .  

P r e a nant 
D a y  1 01 

w 
0) 



A P PE::N O I X  I V . 

Nu11be r o f  
Mou s e  1 0  O v a r y - Ho s t  P l u s a t t a r  Had N u11be r y o u n ,  
N um b e r  Com b i na t i o n P a i r  i n s L i t t e r ?  o f  y o u n s  t ha t  d i ed 

1 - 2 5  B - Y  .. Y e s  4 4 
1 - 2 6  8 - 8  - -

1 - 2 7  B - Y - Y e s  3 0 
1 - 28 8 - 8  + Y e s  2 2 
1 - 29 B - Y + Y e s  7 0 
1 - 3 0  B - B  + N o  
1 - 3 1  B - Y  
1 - 3 2 B - B  + N o  
1 - 3 4 d  B - Y  .. Y e s  6 3 
1 - 3 5  B - B  + No 
1 - 36 B - Y - Y e s  4 0 
1 - 3 7  B - B  .. No 
1 - 3 8  B - Y  + Y e s  4 0 
1 - 3 9  B - 8  .. No 
2 - 4 0 B - Y  ... No 
� - 4 1 B - B - -
2 - 4 3  B - B  
2 - 4 8 8 

B - Y + Y e s  5 0 
2 - 4 9 B - B  
2 - 5 1  B - B  + Y e s  4 0 
2 - 5 3 B - B  + N o  
2 - b 4  B - Y  + Y e s  3 3 
2 - 5 5  B - B  + No 
2 - 5 tl  B - Y  - -

CONT I NUE::D 

P l u 1 
G e n o t y p e s  a f t e r  
o f  y o u n a  1 s t  s . o .  

... 

A l l B l k  
· + 

A l l B l k  

A l l B l k  + 
+ 

A l l B l k  + 
+ 

A l l B l k  
+ 

-

3 Y . 2B i k  

A l l B l k  

+ 

-

P r e 1 na n t  
D a y  1 0 7 

Y e s  

N o  

N o  
Y e s  
Y e s  
Y e s  

Y e s  

Y e s  

P l ul 
a f t e r  
2 n d  s . o .  

. + 

+ 

P r e a n a n t  
D a y  1 0 ?  

N o  

N o  

(() 
-..J 



H o u s e  I D  O v a r y - Hos t P l u & A f t e r  Had 
N u m b e r  C o mb i na t i o n Pa i r  i n & L i t t e r ?  

. 

2 - 5 9 B - 8  

2 - 6 2  B - Y  

2 - 6 4 B - Y  - -
2 - 66 B - Y  

2 - ti 8 B - Y  

2 - 6 �  B - B  + Y e s  
2 - 7 0 8 - Y + No 
2 - 7 2 B - Y  + Y e s  
2 - 7 3 B - 8 - -

2 - 7 4 B - Y  + Y e a  
2 - 7 5 B - 8  

2 - 76 B - Y + No 
2 - 7 7  B - B  + No 
2 - 7 6  B - Y . - -

2 - 79 B - B  + Y e &  
2 - BO B - Y + Y e s 
2 - 8 1  B - B  -

2 - 8 � B - Y  - -
2 - 8 3 B - B  - -
2 - 8 4 B - Y  � No 
2 - 8 1 B - B  - -

2 - b 8 B - Y  - -
2 - 89 B - B - -
2 - 90 B - Y  
2 - 9 1  B - B  - -

A P P E N D I X  I V .  CONT I NUED 

N u11 b e r  of P l u c 
N u11 be r y o u n &  G e n o t y pe s a f t e r  

o f  y o u n a  t ha t  d i ed o f  y o u n s  lil t  s . o .  

-

5 5 t 

3 3 t 
+ 

4 4 

-
4 0 A l l B l k . -
3 0 A l l B l k . + 

-
-
+ 

-
+ 
+ 

+ 

P r e c n a n t  
·day 1 0 ?  

N o  

Y e a  

N o  

Y e s  

N o  

N o  
No 

N .o 

P l u c 
a f t e r  

2nd S . O .  

t 

+ 
+ 

-
+ 

+ 

P r e & n a n t  
Da y 1 0 ?  

No 

N o  

No 

N o  

Y e s 

(£) 
CD 



Ho u s e  I D  O v a r y - Ho s t  P l u c a f t e r  
N u m b e r Co•b i na l i on Pa i r  i n c 

2 - 92 B - Y  + 
2 - 9 1 8 - Y + 
3 - 1 B - 8 -

3 - 2  B - Y -
3 - 3  8 - 8  -
3 - 4  8 - Y  
3 - 5  B - Y 
3 - 6 8 - Y  + 
3 - 9  8 - Y  + 
3 - 1 0  8 - V  -

3 - 1 1  8 - B  -
3 - 1 2  8 - Y  
3 - 1 3  B - B  
3 - 1 4  8 - V + 
3 - 1 5  B - Y  -
3 - 1(:5 8 - Y + 
3 - 1 7  B - Y  -
3 - 1 6  8 - Y + 
3 - 1 9 B - Y  
3 - 20 B - Y  
3 - 2 1  B - B  -
3 - 22 B - Y  
3 - 2 3 B - B  -
3 - 2 4 8 - Y  + 

APPEND I X  I V . CONT I NUED 

Nuabe r  of 
Had Nuab e r  y o u n c  Geno t y p e s  

L i t t e r ?  o f  y o u n c  t h a t  d i e d o f  y o u n 1  

Y e s  4 4 
Y e s  5 0 A l l 8 1  k .  
-
-
-

No 
No 
Y e s  5 5 
-

Y e s  4 0 A l l 8 1  k .  -
Y e s  4 4 -
No 

-

-

Y e s  3 0 A l l B I k .  

P l u c 
a f t e r  P r e a na n t  

h t  s . o . Day 1 0 ?  

-
+ Y e s 
+ Y e s  

+ No 

+ Y e s  
+ Y e s  
+ No 

+ Y e s  

+ No 

P l u a 
a f t e r  

2 n d  5 . 0 .  

.. 

P r e c n a n t  
D a y  1 0? 

No 

(() 
(() 



A P P EN D I X  I V .  C ONT I NUED 

Nu• b e r o f  P l u 1 P l ua 
H o u s e  I D  O va r y - H o • t  P l u a a f t e r  Had Nu•b e r youna Geno t y p e •  a f t e r  P r e a n a n t  a f t e r  P r e a nan t 
Num be r Comb i na t i on Pa i r i n a L i t t e r ?  o f  y oun 1 t h a t  d i ed o f  youn1 ht s. o .  Day 1 0 7  2 n d  s . o .  Day 1 0 7  

3 - :26 B - Y 
3 - 2 7 B - Y  + No - + No 
3 - 28 B - Y  
3 - 29 B - Y  + Y e s  5 0 A l l B l k .  + N o  
3 - 30 B - Y + Y e s  5 5 
3 - 3 1  B - B - - - + N o  
3 - 32 B - Y 
3 - 33 B - B  
3 - 34 B - Y 
3 - 35 B - Y  
3 - 36 B - Y 
3 - 3 7 B - Y + Ye s 5 0 A l l B l k .  t No 
3 - 36 B - Y - Y e s  4 4 
3 - 4 0  B - Y  - - + No 

a 
B l a c k  o va r i e s a r a f t e d  t o  a b l ac k  ho s t .  

b 
B l a c k  o v a r i e s  a r a f t e d  to a y e l l ow ho s t .  

:: 
O n l y  n e o na t e s  t h a t  s u r v i v e d  w e r e  c h e c k e d  f o r a e no t y pe s .  

d 
S o m e  m i ce d i e d d u r i n a s u r a e r y ,  a n d  t he i r  n u m b e r s  w e r e  s k i p p e d  < i . e .  1 - 3 2  - 1 - 34 > 

e 
T h i s  f ema l e  h a d  y e l l ow o f f s p r i n g a nd w a s  n o t  i nc l ud e d  i n  s t u d y . 

O n l y  3 r d  r e p l i ca t i on w a s  s u p e r o v u l a t e d  t h r e e  t i me s . R e s u l t s a r e  a s  f o l l ow s : 3 - 6  a n d  3 - 1 8  p l u & l e d  a f t e r  3 r d  S . O .  b u t  
w e r e  no t p r e g n a n t  D a y  1 0 ,  a n d  3 - 20 d i d  p l u & a f t e r  3 r d  S . O . a n d  wa s p r e g n a n t D a y  1 0 .  

.... 
0 
0 



A P P E N D I X  V .  R A W  D A T A  F R O M  E X P E R I MENT 1 1 . D A Y  1 0  P O ST CO I TUH 

R i gh t  O v a r� Le f t  O v a r� Bl1bt U�trlnt H�rn 
Hou s e  HOU ii e  W e i & h t  Co r p o r a  O t h e r  We i 1 h t  C o r p o r a  O t he r Fo i l i c l e • We l 1 h t  Nu•b• r o f  
N u m b e r  

a 
Geno t y pe 

b 
w t .  ( a > < m a > Lu t e  a Fo l l i c l e • < • a >  Lu t e a  Fo l l i c l e • p e r  Fe•a l e  < • • > d e c i dua 

1 - 1 B 2 7 . 0  7 . 7 8 1 7  0 . 9  0 1 26 2 7 1 . 2  4 
1 - 1 1  B 2 5 . 1 ·  3 . 0 2 1 3  2 . 8 0 1 8  3 3  1 0 1 . 5  1 
1 - 1 5 B 28 . 2  7 . 2 0 0 1 . 0  0 0 0 9 43 . 6 7 
1 - 1 7 B 2 4 . 1 5 . 4  5 22 3 . 6 2 28 57 202 . 3  6 
1 - 2 1  B 26 . 4 5 . 7 1 3 2  2 . 3 4 6 45 6 1 . 1 1 
1 - 2 3  8 30 . 2 1 . 4 1 1 1  7 . 2 4 26 4 2  325 . 9 4 
1 - 26 B 26 . 3  3 . 7 2 1 4  4 . 6  6 20 4 2  1 65 . 5  3 
1 - 35 B 25 . 7 4 . 6  0 3 3  3 . 4  5 26 64 25 . 0  0 
1 - 37 8 30 . 6  7 . 5 6 7 4 . 5  7 1 7  39 306 . 3 9 
1 - 39 8 29 . 6 6 . 6 6 20 5 . 2 6 7 39 5 1 7 . 6 9 

. 1 - 2 y 28 . 3  6 . 6 0 2 5  7 . 0 4 29 56 20 . 4 0 
1 - 1 2 y 29 . 9  1 . 5  0 3 5 . 9  6 1 4  25 1 0 1 . 6  1 
1 - 22 y 3 2 . 1 6 . 0  0 7 5 . 7 2 3 0 39 3 1 . 5  0 
1 - 36 y 2 5 . 4 4 . 8  1 1 3  4 . 6  2 1 1  2 7  89 . 1 3 
2 - 8 7  a· 2 4 . 9  2 . 5 0 1 3  1 . 0  5 1 6  36 2 7 . 0  0 
2 -: 5 4 y 2 7 . 4 3 . 9 0 0 4 . 6  0 0 0 6 3 . 9 . 1 
2 - 7 2 y 30 . 4 1 0 . 3 0 0 o .  1 0 0 0 230 . 9 6 
2 - 60 y 3 1 . 9  2 . 6 0 7 6 . 5  4 26 37 26 . 0  0 
2 - 62 y 2 7 . 7 3 . 7 3 24 7 . 7 1 7 3 5  76 . 3  . 2  
3 - 3  B 24 . 5  - - - 6 . 2 1 23 24 44 . 9  0 
3 - 2 1  B 25 . 5  4 . 0  1 1 6  4 .  1 2 1 3  3 3  6 7 . 0 3 
3 - 2  y 26 . 5  2 . 6  5 . 9 5 . 0  2 9 2 5  1 0� . 5 3 
3 - 1 5  y 2 5 . 0 6 . 0 0 1 1  3 . 7 3 1 2  26 20 . 9  0 
3 - 1 6  y 26 . 6  6 . 4  5 1 5  5 . 9  8 1 4  4 2  1 1 3 . 9 5 
3 - :w y 29 . 3  4 . 0  0 9 6 . 3 3 1 4  26 25 . 9  0 

..... 
0 
..... 



Le f t  U t e r i ne Horn ii;lb[�Q 5CO r!i 
. t1 e a n  t o t a  I T o t a l n nu•be r  

M o u s e  D e c i d ua l  We i jE h t  Num b e r  o f  D e c i d u a l d e c i dua l T o t a l  u t e r i ne t o r  t1elln No . 
N um b e r d e s  i 1 na t 1  o n  < m i > d e c i dua d e s i g na t i o n w t . < • i >  d e c i d ua w t .  < • e >  a o• t t e s  s o a i t e •  N R A Eab r yo s  

1 - 1  2 - 5  7 4 . 2  1 1 43 . 5 5 34 5 . 4 4 2 4 . 0  4 0 1 4 
1 - 1 1  1 20 . 2 0 0 56 . 6  1 1 2 1 . 7  1 29 . 0  1 0 0 1 
1 - 1 5 1 - 7 2 5 . 5  0 0 96 . 0  7 969 . 1 5 3 3 . 6 5 0 2 5 
1 - 1 7  2 - 7 5 3 . 7 1 1 2 2 . 5  7 25 6 . 0 5 6 . 0 0 6 1 6 
1 - 2 1  3 1 5 0 . 6 2 1 - 2 3 7 . 6  3 2 3 1 . 7  2 1 6 . 5 1 1 1 2 
1 - 2 3 · 5 - 6  3 1 6 . 6  4 1 - 4 5 6 . 2 6 64 2 . 5  6 26 . 6 B 0 0 B 
1 - 26 3 - 5  1 1 5 . 0  2 1 - 2 3 2 . 2 5 260 . 5 4 1 6 . 2 0 4 1 4 
1 - 35 0 6 1 . 0  1 l 3 3 . 1 1 66 . 0  1 2 3 . 0  1 0 0 1 
1 - 3 7  3 - 1 1  1 4 1 . 1 2 1 - 2 2 7 . 5 1 1  449 . 4 3 1 6 . 6  2 2 7 4 
1 - 39 6 - 1 6  390 . 6 7 1 - 7 36 . 1  1 6 906 . 2 1 1  26 . 4  1 1  0 5 1 1  
1 - 2  0 1 2 5 . 7 3 1 - 3 2 3 . 0  3 · 1 46 . 1 1 1 6 . 0 0 2 1 2 
1 - 1 2  9 365 . 3  6 1 - B 3 3 . 1 9 466 . 9 4 2 1 . 2  2 2 5 4 
1 - 22 0 7 1 . 0  3 1 - 3 1 0 . 9  3 1 02 . 5 0 0 0 0 3 0 
1 - 36 3 -·5 6 1 . 9  2 1 - 2 1 6 . 9 5 1 7 1 . 0  1 1 6 . 0  0 1 4 1 
2 - 8 7 0 1 6 4 . 0  7 1 - 7 1 6 . 3  7 2 1 1 . 0  0 0 0 6 . 1 6 
2 - 5 4  6 3 60 . 5 7 1 - 7 3 2 . 6 6 424 . 4 4 23 . 5  4 0 4 4 
2 - 72 1 - 6 1 4 .  1 0 0 1 6 . 2 6 245 . 0 6 4 . 2 0 7 1 7 
2 - 80 0 2 22 . 4 5 1 - 5 3 2 . 2  5 2 4 6 . 4 5 20 . 2 4 1 . 0  5 
2 - 8 2 5 - 6 1 35 .  1 4 1 - 4 2 2 . 6  6 2 1 1 . 4  6 3 . 2 0 6 0 6 
3 - 3  0 1 2 1 . 4  1 1 6 3 . 0  1 1 66 . 3 1 3 7 . 0  1 0 0 1 
3 - 2 1  1 - 3 2 1 . 0  0 0 7 . 3 3 86 . 0  3 0 0 2 1 2 
3 - 2  1 - 3  1 8 . 0  0 0 2 0 . 4 3 1 20 . 5 2 9 . 7 1 2 0 3 
3 - 1 5  0 1 09 . 4 4 1 - 4 1 6 . 6 4 1 30 . 3 4 6 . 0 0 4 0 4 
3 - 1 6  7 - 1 1  1 4 2 . 2 6 1 - 6 1 4 . 3 1 l  25 6 . 1 4 2 . 7 0 6 5 6 
3 - 20 0 1 96 . 2 2 1 - 2 6 9 . 0  2 2 2 2 . 1 1 4 4 . 0 1 0 

a 
f i r s t  n u m b e r  r e p r e s e n t s  r e p l i ca t i on num b e r  w h i l e  s e c o n d  n um b e r  i s  .nu m b e r  o f  i nd i v i dua l m o u s e .  

b B r e p r e s e n t s  B - B  g r a f t i n g ,  w h i l e  Y r e p r e s e n t s  B - Y  g r a f t i n� .  

..... 
0 
N 



. APPEND I X V I  . RAW DATA FROM E X P E R I MENT 1 1  • DEC I DUAL WE I GHT
a 

and EMBRYO SOH I TE
b 

NUMBER o f 1 0 - DA Y  P R EGNANT H I CE 

l!tgldutl l!t111DI!I2D 
M o u s e  n n u m b e r  N u • b e r  o r  
N u m b e r  G e n o t y pe t o r s o• i t e s  de c i dua e  1 2 3 4 5 6 7 8 . 

1 - 1 B e 4 5 3 7 . 7 < 27 )
d 

49 . 3 < 25 )  36 . 3 ( - ) e 4 6 . 6 < 2 1 ) 4 7 . 6 < 23 )  
1 - 1 1  B 1 1 56 . 6 < 29 )  
1 - 1 7 B 5 7 26 . O <  1 0 >  1 7 . 5 ( 5 )  1 8 . 1 < - ) 2 1 . 8 ( 1 4 )  36 . 4 ( 6 )  1 7 . 6 ( - )  20 . 0 ( 5 )  
1 - 2 1 B 2 . 3 4 4 . 3 < 1 8 )  4 8 . 9 < 1 9 )  20 . 2 ( - ) 
1 - 23 8 8 8 4 6 . 3 < 25 )  66 . 9 ( 24 )  5 3 . 7 < 36 )  5 9 . 3 < 29 )  65 . 9 < 3 1 ) 49 . 4 < 26 )  7 1 . 4 ( 30 )  37 . 0 < 2 < 0  
1 - 26 8 4 5 34 . 2 <  1 1 >  32 . 9 (  1 9 ) 33 . 5 < 1 7 )  32 . 4 ( - ) 28 . 4  ( 1 8 )  
1 - 35 8 1 1 33 . 1 < 23 ) 
1 - 3 7 f 

B 3 1 1  33 . 8 ( - )  56 . 6 < 23 )  1 7 . 6 ( - ) 5 . 3 ( - )  45 . 7 ( 25 )  36 . 7 < 1 4 )  20 . 2 ( - )  1 8 . 1 ( - )
f 

1 - 39 8  8 1 1  1 6  1 8 . 5 ( - ) 37 . 6 < 25 )  22 . 3 ( - )  5 0 . 6 ( 26 >  28 . 1 ( - ) 5 2 . 0 ( 29 )  4 9 . 5 ( 27 )  6 5 . 2 < 36 ) 1 

1 - 1 5 B 5 7 4 2 . 2 ( - )  4 5 . 1 < 25 )  8 2 . 3 ( - ) 1 08 . 4 ( 30 )  1 0 7 . 6 ( 37 )  1 5 8 . 7 < 39 ) 1 4 1 . 8 < 3 8 ) 
2 - 67 B 0 1· 1 9 . 7 ( - ) 1 6 . 5 ( - ) 20 . 0 ( - )  2 1 . 6 ( - )  1 8 . 2 ( - )  2 0 . 3 ( - )  1 1 . 7 ( - ) 
3 - 3 B 1 1 63 . 0 < 3 7 )  
3 - 2 1 B h 0 3 1 0 . 0 ( - ) 6 . 9 ( - )  5 . 0 ( - ) 
1 - 2 y 1 3 1 8 . 4 ( - ) 26 . 0 < 1 8 )  24 . 5 ( - )  
1 - 1 2 1 y 4 9 22 . 3 ( - )  29 . 6 ( - ) 34 . 1 ( - ) 34 . 0 ( 9 )  9 . 9 ( - )  39 . 6 < 25 )  29 . 7 ( - ) 5 1 . 4 < 23 >

1 

1. - 22 y 0 3 7 . 2 ( - ) 9 . 0 ( - ) 1 6 . 5 ( - )  
1 - 36 y 1 5 1 6 . 9 ( - ) 3 1 . 5 ( 1 8 )  1 9 . 1 < - )  9 . 9 ( - ) 1 7 . 1 ( - )  
2 - 5 4  y 4 8 3 3 . 5 < 2 1 ) 3 2 . 3 < 20 )  3 1 . 8 ( - )  3 1 . 5 ( - ) 45 . 2 ( 28 )  4 0 . 3 < 25 )  29 . 8 ( - )  1 7 . 9 ( - )  
2 - 7 2 y 6 8 1 6 . 3 ( 5 )  1 5 . 6 < 4 >  2 1 . 7 ( 3 )  24 . 0 ( 5 )  1 5 . 7 ( - )  1 9 . 4 ( 6 )  2 1 . 0 < 7 )  1 1 . 9 ( - )  
2 - 80 y 5 5 3 3 . 3 < 20 )  34 . 6 ( 2 1 ) 3 3 . 7 < 2 1 ) 29 . 9 ( 20 )  29 . 7 < 1 9 )  
2 - 82 y 5 6 2 1 . 4 ( - ) 23 . 4 ( 4 )  28 . 4 ( 5 )  24 . 1 ( 3 )  20 . 1 < 3 )  1 9 . 6 ( 4 )  
;j - 2  y 2 3 29 . 2 < 26 >  1 6 .  7 ( 3 )  1 5 . 3 ( - )  
3 - 1 5  y 4 4 1 5 . 1 < 5 )  1 7 . 9 ( 6 )  1 6 . 5 ( 4 )  1 5 . 1 < 7 )  
3 - 1 6 j  y 4 1 1· 1 2 . 0 ( - )  1 5 . 4 ( 3 )  1 2 . 3 < - )  1 5 . 6 ( - )  1 7 . 8 < 4 )  1 4 . 9 ( 5 )  1 7 .  4 ( - ) 1 0 . 5 ( - ) j 

3 - 20 y 1 2 1 03 . 0 < 4 4 )  3 4 . 9 ( - ) 

a 
Dec i d u a e  w e r e  d i s s e c t e d f r o m  u t e r i and we i g hed < m e > .  

b E m b r y o s  w e r e  d i s s e c t e d f r o m  d e c i dua e a n d  s c o r e d  f o r  d e v e l o pm e n t a l p r o g r e s s .  Som i t e numb e r  w a s  u s e d  a &  a qua n t i ta t i v e 
a s s e s s m e n t  f o r  d e v e l o p m e n t a l no r ma l i t y .  

...... 
0 
w 



c 

d 

e 

g 

h 

APPEND I X  V I .  CONT I NUED 

T h i s  g e no t y pe r e p r e s e n t s  �� � ov a r i e s  & r a f t e d  t o  jl/ � < B >  an i aa l s . 

E a c h  t e r m  r e p r e s e n t s  dec i d ua l we i & ht. < • & >  f o l l owed by soa i t e nuabe r o f  t he eab r y o  w i t h i n  t ha t  d ec i du a . For e x aap l e ,  
3 7 . 7 < 2 7 >  m e a n s  t he d e c i dua we i & hed 3 7 . 7 m &  and c o n t a i ned a n  • • b r y o  t h a t  po s s e s s e d  27 s oa i t e s .  

N o  emb r yo cou l d  b e  f ound w i t h i n  t he s e  d e c i dua e .  

�� � m o u s e  numbe r 1 - 3 7  had 1 1  d e c i duae ; nu•be r s  9 - 1 1  a r e  a s  f o l l ow s : 1 6 . 1 < - > ,  32 . 0 < 5 >  a n d  2 0 . 5 < - > r e s pe c t i ve l y . 

�� � mouse numbe r 1 - 39 had 1 6  d e c i d uae ; nu•be r s  9 - 1 6  a r e  as f o l l ow s : 55 . 4 < 30 > , 22 . 8 < 28 ) , 5 4 . 0 ( - ) ,  48 . 6 < 33 ) , 49 . 7 ( 2 7 ) , 
42 . 2 < 2 7 ) , 22 . 6 < - > ,  a nd 4 0 . 1 < 24 >  r e s pec t i v e l y . 

Th i s  a e n o t y pe r e p r e s e n t s  jl/ � o v a r i e s & ra f t e d  t o �· � �  < y >  an i aa l s . 

�� � � mouse numbe r 1 - 1 2  had 9 d e c i duae ; d e c i dua nu• b e r  9 w a s  4 7 . 6 ( 28 > .  

�� � � m o u s e  numb e r  3 - 1 6  had 1 1  dec i duae ; numbe r s  9 - 1 1  a r e  a s  f o l l ow s ; 1 5 . 4 ( 4 ) ,  1 6 . 5 ( - )  a n d  9 . 1 < - > r e s pe c t i ve l y . 

..... 
0 
� 



House 
Nuaber 
1 - 3 
1 - 4 
1 - 5  
1 - 6 
1 - 7  
1 - 8 
1 - � 
1 - 1 0 

1 - 1 3  
1 - 1 4 
1 - 1 6 
1 - 20 

1 - 25 
1 - 2 7  
1 - 29 
1 - 30 
1 - 3 1  
1 - 32 
� - 40 
2 - 4 3 . 

APPEND I X  V I I .  RAW DATA FROH EXPE R I HENT I I . FEHALES THAT FA I LED TO COPULATE AFTER PHS / HCG TREATHENT 

R t c h t  R l c h t  Lef t L e t t Bllht Q�l�ygt fiYihiDI 
Hou•e Ova r y  o v a r y  t o t a l

• 
Ova r y  ova r y  t o t a l

• 
U t e r u •  G r a nu l a r Ve• l cu l a t e  Nor•a l 

Geno t ype w t . < c >  w t . < • c >  Fo l l t c l • • w t . < • l )  Fo l l i c l e • w t . < • l )  Ova Ova Ova 

Bb '2.7 . 4  6 . 3 4 . 6  5 9 . 5 - - -
'{ 36 . 5  - c 3 . 1 36 . 0. - - 2 B 23 . 6  4 . 3 - 5 3 . 6 
y 35 . 1 4 . 3 9 . 3 5 6 . 3 
B 26 . 4  1 . 3  1 4 . 3 63 . 5  1 
'{ 26 . 4  5 . 9  5 .  1 6 1 . 3  2 2 1 
B 26 . 2  6 . 3 1 3 . 2 6 3 . 3 - 4 
y 3 7 . 3 4 . 3  6 . 2 4 2 . 4 - -
B 25 . 7  6 . 4 3 . 6 6 2 . 0  - - 8 y 36 . 7  6 . 3 5 . 4  6 1 . 7  
'{ 36 . 7 1 1 . 9  1 . 1 4 6 . 5 1 1 7 
'{ 34 . 4  9 . 4 3 . 3 5 2 . 9 
y 3 7 .  1 6 . 6  3 . 6 4 9 . 6 
y 2 3 . 0 - 0 . 7 26 . 4  
y 3 1 . fl 1 . 2  0 . 5 43 . 6  
B 2 3 . 7 6 . 7 5 . 6  1 75 . 1 - - - · 
y 32 . 3  5 . 3 - 4 3 . 5 
B 22 . 6  3 . 3 3 . 6 36 . 3 
'{ 30 . 2 3 . 7 7 2 . 5 1 9  6 4 . 5  - - 1 
B 24 . 5  4 . 4 1 7  2 . 5 2 1  4 9 . 1 - - 2 

2 - ce l l 
s t a c• •  

5 

7 

..... 
0 
(J1 



�1ft Q�&�u2t El�lbiDI 
House . G r anu l a r V e � l cu l ate No r •a l  2 - ce l l  
Nuabe r Ova O v a  O v a  s t a c • •  

1 - 3 - - - -
1 - 4 1 - - -
1 - 5 - - - -
1 -6 - - 2 -
1 - 7 5 - - • 
1 - 8 - - - -
1 - 9 - - - -

1 - 1 0  - - - -
1 - 1 3  - - 4 -

1 - 1 4  2 - 2 -

1 - 1 6  - ·1 2 -
1 - 20 - - - -

1 - 25 - - - -
1 - 2 7  - - - -
1 - 29 - - 1 -
1 - 30 - 2 - 3 
1 - 3 1  - - - -

1 - 32 - - - -. 
2 - 40 2 1 1 -
2 - 4 3  - - 1 -

Tota l Tota l 
Ova Ent l t i e• 

- -

1 1 
- -
• • 
6 1 0  
5 1 0  
• • 
- -
1 2  1 2  
• • 
1 2  1 2  
- -

1 1 
- -

2 2 
2 1 2  
- -
- -

5 5 
3 3 

R t a h t , l e f t  
o r  b o t h  

O v i d u c t •  

-

l e f t  
-

bo t h  
b o t h  
r t c h t  
r t a h t  
-
bo t h  
l e t t  
b o t h  
-
r t c h t  
-
b o t h  
b o t h  
-
-

b o t h  
bo t h  

Co••e n t •  

No o v a  p r e • e n t  

N o  ova p r e • a n t  

P r e cnant ( 2 - ce l l )  
P r e anant < 2 - oe l l )  

No ova p r e • a n t  

No ova p r a • a n t  

N o  ova p r e • e n t  

P r a cnant < 2 - oe l l )  
No o v a  p r a • e n t  
N o  ova p r e • a n t  

..... 
0 
m 



APPEND I X  V I I 

R i & h t  R l i h t  Le t t  
M o u s e  H o u ii e  Ova r y  Ova r y  t o t a l Ova r y  
N u m b e r U e no t y pe W t . < i ,  w t .  < m e >  Fo l l i c l es •  w t . < • e >  

2 - 4 6 y 26 . 0  1 0 . 7 1 7  5 . 7 
2 - 4 9 8 24 . 3  3 . 0 1 2  3 . 3 
2 - 5 3  8 23 . 4  - 0 5 . 5  
2 - 5 9 8 2 1 . 4  5 . 0 1 9  2 .  1 
2 - 6 2 y 2 7 . 1 4 . 0  1 2  2 . 9  . 
2 - 66 y 23 . 0 4 . 6  6 4 . 6 
2 - 66 y 24 . 4  6 . 6 7 5 .  1 
2 - 70 y 2 7 .  1 1 . 6  1 4  9 .  1 
2 - 73 8 25 . 6  6 . 6 2 1  5 . 6  
2 - 74 y 30 . 0  1 . 9  1 2  1 0 . 2 
2 - 7 5 8 26 . 7  2 . 0 1 7  6 . 2 
2 - 76 y 29 . 7  3 . 0 7 6 . 0  
2 - 7 7 8 27 . 6 7 . 4  1 3  0 . 2 
2 - 6 1  8 2 1 . 4  - 0 1 . 2  
2 - 6 4 y 26 . 4  2 . 7 2 1  0 . 2 
2 - 90 .Y 26 � 1 1 . 3  6 3 . 6 
2 - 9 2  y 25 . 4  2 . 5 6 5 . 5  
2 - 9 3 y 26 . 1 4 . 7 6 1 3 . 9 
3 - 4  y 3 1 . 7  6 . 3 1 1  5 . 5  
3 - 9  y 30 . 9  7 . 5 1 4 5 . 7 

CONT I NUED 

Le t t  
O v a r y  t o ta l U t e r us 
Fo l l i c l e s •  W t .  ( II C )  

1 6  40 . 6  
1 7  39 . 0  
23 48 . 0  
1 0  4 4 . 2  
5 5 2 . 6  
1 7  4 3 . 1 
8 3 5 . 9  
1 3  5 1 . 7  
1 9 , 6 6 . 0  
1 0  49 . 1 
2 2  6 1 . 0  
2 1  39 . 6  
1 7 1 . 8  
1 3  4 8 . 3 
3 4 4 . 6  
1 5  49 . 4  
29 5 0 . 9 
1 6  5 2 . 3  
9 4 7 . 6 
1 5  4 6 . 9  

8l1b! O�ldyg� fiYibiDI 
G ranu l a r V e s i cu l a t e  Noraa l 

Ova Ova Ova 

- 2 5 

1 1 2 

2 1 1 - - 4 
1 2 3 

1 
2 1 1 - - 1 

- - 2 

2 . 1 6 

2 - ce l l  
S t a a e •  

t-
o 
� 



�111 Qv&�ug1 EIYibiDI 
Mou s e  G r a nu l a r V e s i cu l a t e N o r •a l 
N um b e r  Ova Ova Ova 

:l - 4a - - -
2 - 4 9 2 - 2 
2 - 5 3  2 - 6 

2 - 5 9 - - -
2 - 6 2  - - -

2 - 6 6  - - 3 
2 - 68 - - -

2 - 7 0 - 1 1 
2 - 7 3  - - -

2 - 7 4 - - 2 
2 - 75 2 - 6 

2 - 7 6  - 2 3 
2 - 7 7 - - -
2 - a l  - - -

. 2 - 6 4  - - 1 
2 - 90 - - -
2 - 9 2  - - -
2 - 93 - 1 2 
3 - 4  - - -
3 - 9  1 1 5 

2 - c e l l 
S t a 1 e •  

-
-
-
-· 
-
-
-
- . 
-
-
-
-
-
-
-
-
-
-
-
-

Tota l To ta l 
Ova E n t l t l e a 

7 7 
5 5 
a a 
4 4 
- -
3 3 
- -

6 6 
4 4 
a 8 
8 8 
6 6 
4 4 
1 1 
1 1 
2 2 - -
3 3 
9 9 
7 7 

R i l h t ,  l e f t 
or b o t h  
Ov i d uc t •  

r i 1 h t  
b o t h  
bo t h  
r i 1 h t  

-

l e t t  -
bo t h  
r t a h t  
bo t h  
l e t t  
bo t h  
r i a h t  
r i a h t  
l e f t  
r l a h t  -
l e f t  
r i a h t  
l e f t 

Coaaa n t •  

No o v a  p r a • en t  

No ova p r a • a n t  

No o v a  p r a • a n t  

..... 
0 
()) 



APPENO i lt  V I  I • CONT I NUED 

R i g h t R t c h t · Le f t  Le f t  
Mou s e  H o u & e  O v a r y  ov a r y  t o t : l Ova r y  o v a r y  t o t: l 
N UJn b e r Geno t ype W t .  < r P  w t . < • c > Fo l l i c l e • w t . < • a >  Fo l l i c l e • 

3 - 1 0  y 2 1 . 9 5 . 7 1 6  3 . 4 1 6  
3 - 1 2 y 3 1 . 6  2 . 3 6 0 . 5 3 
3 - 1 4  y 2 7 . 5  2 . 3 1 1  6 . 2  1 2  
3 - 1 9 y 26 . 1 7 . 3 1 4  2 . 0 2 
3 - 2 2  y 2 5 . 4  5 . 6  9 4 . 7 1 6  
3 - 2 4  y 2 3 . 7 7 . 5 2 1  3 . 0 5 
3 - 26 y 3 1 . 4 1 0 . 9 1 5  6 . 4 1 7  
3 - 28 v 32 . 0  4 . 4 1 1  1 0 . 7 1 2  
3 - 30 y 30 . 9  4 . 3  1 3  7 . 0  1 7  
3 - 3 1  8 2 4 . 6 4 . 3  1 2  2 . 5 1 6  
3 - 3 2 y 3 2 . 0 3 . 0 6 6 . 6 1 8  
3 - 3 3  8 2 5 . 3  3 .  1 1 5  6 . 0  1 3  
3 - 3 4 y 2 4 .·6 2 . 5 1 7  1 . 4  1 2  
3 - 3 5 y 2 4 . 3  4 . 5 1 5  4 . 9  1 4  
3 - 36 y 29 . 5  4 . 6  1 8  6 .  1 1 3  
3 - 36 y 32 . 1 2 .  1 5 2 . 4 3 

U t e r u a G r a n u l a r 
w t . < • a > Ova 

45 . 0  -
29 . 0  -
5 2 . 0  -
4 7 . 5 -
4 1 . 3  
4 5 . 9  1 
5 4 . 2  1 
45 . 3  2 
46 . 0  1 
4 6 . 1 -
49 . 5  
4 5 . 6  4 
40 . 0  -
5 5 . 4  -
5 4 . 7 
48 . 8  
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Numbe r Ova O va Ova S ta 1 e •  Ova E n t l t i e • O v i d uc t •  

;j - 1 0  - 1 1 - 6 6 b o t h  
3 - 1 2  - 1 6 - . 6 6 b o t h  
3 - 1 4  - - 1 - 3 3 bo t h  
3 - 1 9  - - - - 1 1 r i a h t  
3 - 22 4 1 - - 5 5 l e f t  
3 - 2 4 - - - - 4 4 r t a h t  
3 - 26 - - - - 6 6 r i 1 h t  
3 - 28 - - - - 5 5 r t a h t  
3 - 30 1 1  - 7 - 2 1  2 1  b o t h  
3 - 3 1  - - 8 - 1 6  1 6  b o t h  
3 - 32 B 3 7 - 1 8  1 6  l e t t  
3 - 33 - - - - 4 4 r i t h t  
3 - 34 - ' - - - 3 3 r i  t h t  
3 - 35 1 - 4 - 9 9 bo t h  
3 - 36 3 - 6 - 9 9 l e f t  
3 :... 38 - - - - 1 1 r t a h t  

a 
V i s ua l s co r e  o f  o v a r i e s was no t done w i t h r e p l i ca t i on 1 .  

b 
v aeno t y pe r e p r e s e n t s  b l ac k  < �I�> o v a r i e s c r a f t e d  t o  ye l l ow ( �/�) an l aa l . 

c 
No ova r y  wa s p r e s en t .  

d 
B g e n o t y pe r e p r e s e n t s  b l a c k  ( �/ �) o v a r i e s  a r a f t e d  to b l ac k  ( �/�) a n l aa l . 
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1 - tl B - B  26 . 4 9 . 8  1 . 9 
1 - 1 9  B - B  29 .'5 1 . 6  6 . 2 
1 - 28 B - B  2 4 . 7  3 . 9 4 . 6  
2 - 4 1 B - B  2 7 . 4 5 . 9 4 . 2  
2 - 69 B - B  2 4 . 6  5 . 4 4 . 0  
2 - 7 3 B - B  2 3 . 9  5 . 0 1 . 2  
2 - 79 B - B 2 7 . 0  6 . 2 2 . 7 
2 - 8 3 B - B 2 3 . 3 3 . 7 2 .  1 
2 - 89 B - B  24 . 7  2 . 2 6 . 9  
2 - 9 1  B - B  2 2 . 5  5 . 0  3 . 7 
3 - 2 3 B - 8  25 . 8  8 . 4 1 . 4  
3 - 1 8  B - Y  3 3 . 0  4 . 6 20 . 9  
3 - 2 4 B - Y · 3 1 . 7  3 . 2 5 . 6 
3 - 3 4 B - Y  2 7 . 7 4 . 3  3 . 4 
3 - 5 8 B - Y  28 . 5  6 . 7 2 . 5 
3 - 6 4  B - Y  3 1 . 4  1 . 1 1 . 3  
3 - 7 8 B - Y  2 4 . 4  2 . 8 1 . 9  
3 - 88 B - Y  28 . 9  0 . 6 4 . 4 
3 - 6  B - Y  30 . 4 0 . 8 3 . 5 
3 - 1 7  B - Y  2 6 . 3 0 . 4 2 . 7 
3 - 1 8  B - Y  26 . 2 1 . 6  3 . 9  
3 - 29 B - Y  2 7 . 8 0 . 6 5 . 9  
3 - 3 7 B - Y  29 . 4  1 . 5  5 . 6  
3 - 4 0  B - Y  26 . 8  6 . 0 3 . 3 

a 
N u m b e r o t  f o l l i c l e s p r e s e n t  a f t e r s c o r i n g v i s u a l l y . 

b T h i s  u t e r i n e h o r n  w a s  t u l  I o f  a y e l l o w i s h  f l u i d .  
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2 7  1 2  30 . 6 . 2 1 . 4  
9 3 1  25 . 3  25 . 2  
1 6  1 0  3 4 . 2  23 . 4  
1 6  1 6  38 . 2  36 . 1  
23 10 26 . 4  24 . 9  - - 4 3 . 5 30 . 7  
2 1  20 2 7 . 1 2 2 . 7 
1 1  1 0  6 2 . 0 39 . 5  
7 1 6  5 0 . 3 39 . 2  
22 1 5  9 3 . 2 76 . 0  
1 9  3 37 . 6  29 . 6  
25 24 63 . 9  56 . 4  
22 37 20 . 2  b 2 1 . 6  
32 23 24 1 . 4  67 . 5  
4 9 26 . 6  22 . 7  
1 2  6 25 . 2  1 9 . 1 
2 5  6 2 4 . 6  1 6 .' 1  
1 9 56 . 5  4 6 . 7 
6 9 3 1 . 7  1 9 . 5  
4 1 1  5 7 . 1 59 . 4  
1 5  1 3  35 . 7  2 7 . 2 
2 2 1  6 7 . 1 46 . 0  
1 2 1 1  79 . 2 62 . 5  
7 1 1  99 . 2  6 1 . 6  , 
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5 2 . 0 
5 0 . 5 
5 7 . 6  
7 2 . 3  
5 3 . 3 
74 . 2  
49 . 6  
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6 7 . 6 
1 42 . 3  
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5 1 . 3  
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4 2 . 7 
1 03 . 2 
5 1 . 2  
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6 2 . 9  
1 33 . 1 
1 6 1 . 7  
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