30 research outputs found

    The nature of vegetation science

    Get PDF
    Fil: Partel, Meelis. University of Tartu. Institute of Ecology and Earth Sciences; EstoniaFil: Chiarucci, Alessandro. University of Siena. Department of Environmental Science ‘‘G. Sarfatti’’. BIOCONNET, Biodiversity and Conservation Network; ItaliaFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Wilson, J. Bastow. University of Otago. Botany Department ; Nueva Zeland

    Diet of the reintroduced guanaco (Lama guanicoe) population into the Quebrada del Condorito National Park, Argentina

    Get PDF
    La reintroducción de especies silvestres es una herramienta recomendada cuando favorece la funcionalidad del ecosistema y se realiza en un proceso a largo plazo. Por ello es necesario evaluar científicamente los distintos aspectos ecológicos involucrados en el proceso de reintroducción. En el caso de los grandes herbívoros silvestres un aspecto importante es conocer los hábitos de forrajeo. En el presente estudio se determinó la dieta a nivel de especie de la población de guanacos (Lama guanicoe) reintroducida en el Parque Nacional Quebrada del Condorito (Córdoba, Argentina). Para ello entre febrero y agosto de 2009 se recolectaron muestras de heces frescas en del territorio ocupado por los grupos reproductivos dentro del Parque. La composición botánica de las muestras se determinó mediante análisis microhistológico. La dieta de los guanacos reintroducidos estuvo constituida principalmente por gramíneas y ciperáceas de bajo porte, características de los céspedes, y, a pesar de la alta diversidad de plantas vasculares presentes en el área de estudio, solo cinco especies representaron entre el 71 % (para los meses fríos y secos) y el 93 % (para los meses cálidos y húmedos) de la dieta consumida durante el período de estudio: Sorghastrum pellitum, Chascolytrum subaristatum, Carex fuscula, Eleocharis pseudoalbibracteata y Lachemilla pinnata. Asimismo, las cuatro primeras especies fueron consumidas en una proporción significativamente mayor a la abundancia en el campo, lo que estaría indicando que los guanacos reintroducidos se comportaron como consumidores selectivos. Por otra parte se detectó una variación estacional pequeña pero consistente en el consumo de las especies vegetales, incrementándose en los meses fríos y secos el consumo de las gramíneas de alto porte D. hieronymi y P. stuckertii, dominantes en los pajonales, y de especies leñosas. Esto se debe probablemente a la disminución de la productividad durante los meses fríos y secos en el área de estudio.Wild species reintroduction is a highly recommended tool when favors ecosystem functionality. It constitutes a long-term process and requires the evaluation of the different ecological aspects involved in the reintroduction process. In the case of large wild herbivores one important aspect that should be known is foraging habits. In the present study, diet at the species level was determined for the guanaco (Lama guanicoe) population reintroduced in the Quebrada del Condorito National Park (Córdoba, Argentina). Fresh faeces samples were collected within the territory occupied by reproductive groups in the Park, between February and August 2009. Diet botanic composition was determined by microhistological analysis. The diet of reintroduced guanacos was composed mainly by short grasses and sedges, characteristic plants of grazing lawns. Despite the high plant diversity in the study area, only five species represented 71% (for the cold and dry months) to 93% (for the warm and wet months) of the diet consumed during the study period in the Park: Sorghastrum pellitum, Chascolytrum subaristatum, Carex fuscula, Eleocharis pseudoalbibracteata y Lachemilla pinnata. The former four species were consumed in a proportion significantly higher than their abundance in the field, which is indicating that the reintroduced guanacos are behaving as selective consumers. Additionally, a small but consistent seasonal difference was detected in plant species consumption, with higher consumption of the tussock grasses D. hieronymi and P. stuckertii, dominant in tussock grasslands, and of woody plants, during the dry and cold season. Probably this was caused by the productivity decrease during cold and dry season months in the study area.Fil: Barri, Fernando Rafael. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Ecología y Recursos Naturales Renovables; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Cordoba. Instituto de Diversidad y Ecologia Animal; ArgentinaFil: Falczuk, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentin

    Biodiversity and ecosystem services science for a sustainable planet: the DIVERSITAS vision for 2012–20

    Get PDF
    DIVERSITAS, the international programme on biodiversity science, is releasing a strategic vision presenting scientific challenges for the next decade of research on biodiversity and ecosystem services: “Biodiversity and Ecosystem Services Science for a Sustainable Planet”. This new vision is a response of the biodiversity and ecosystem services scientific community to the accelerating loss of the components of biodiversity, as well as to changes in the biodiversity science-policy landscape (establishment of a Biodiversity Observing Network — GEO BON, of an Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services — IPBES, of the new Future Earth initiative; and release of the Strategic Plan for Biodiversity 2011–2020). This article presents the vision and its core scientific challenges.Fil: Larigauderie, Anne. DIVERSITAS. Muséum National d’Histoire Naturelle; FranciaFil: Prieur Richard, Anne Helene. DIVERSITAS. Muséum National d’Histoire Naturelle; FranciaFil: Mace, Georgina. Imperial College London. Center for Population Biology; Reino UnidoFil: Londsdale, Mark. CSIRO Ecosystem Sciences; AustraliaFil: Mooney, Harold A.. Stanford University. Department of Biological Sciences; Estados UnidosFil: Brussaard, Lijbert. Wageningen University, Soil Quality Department; Países BajosFil: Cooper, David. Secretariat of the Convention on Biological Diversity; CanadáFil: Wolfgang, Cramer. Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale; FranciaFil: Daszak, Peter. EcoHealth Alliance. Wildlife Trust; Estados UnidosFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Duraiappah, Anantha. International Human Dimensions Programme; AlemaniaFil: Elmqvist, Thomas. University of Stockholm. Department of Systems Ecology and Stockholm Resilience Center; SueciaFil: Faith, Daniel. The Australian Museum; AustraliaFil: Jackson, Louise. University of California; Estados UnidosFil: Krug, Cornelia. DIVERSITAS. Muséum National d’Histoire Naturelle; FranciaFil: Leadley, Paul. Université Paris. Laboratoire Ecologie Systématique Evolution, Ecologie des Populations et Communautés; FranciaFil: Le Prestre, Philippe. Laval University; CanadáFil: Matsuda, Hiroyuki. Yokohama National University; JapónFil: Palmer, Margaret. University of Maryland; Estados UnidosFil: Perrings, Charles. Arizona State University; Estados UnidosFil: Pulleman, Mirjam. Wageningen University; Países BajosFil: Reyers, Belinda. Natural Resources and Environment; SudáfricaFil: Rosa, Eugene A.. Washington State University; Estados UnidosFil: Scholes, Robert J.. Natural Resources and Environment; SudáfricaFil: Spehn, Eva. Universidad de Basilea; SuizaFil: Turner II, B. L.. Arizona State University; Estados UnidosFil: Yahara, Tetsukazu. Kyushu University; Japó

    Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders.

    Get PDF
    Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development

    Plant functional diversity and carbon storage- an empirical test in semiarid forest ecosystems

    No full text
    Summary 1. Carbon storage in vegetation and soil underpins climate regulation through carbon sequestration. Because plant species differ in their ability to capture, store and release carbon, the collective functional characteristics of plant communities (functional diversity) should be a major driver of carbon accumulation in terrestrial ecosystems. 2. Three major components of plant functional diversity could be put forward as drivers of carbon storage in ecosystems: the most abundant functional trait values, the variety of functional trait values and the abundance of particular species that could have additional effects not incorporated in the rst two components. 3. We tested for associations between these components and carbon storage across 16 sites in the Chaco forest of Argentina under the same climate and on highly similar parental material. The sites differed in their plant functional diversity caused by different long-term land-use regimes. 4. We measured six plant functional traits in 27 species and weighted them by the species abundance at each site to calculate the community-weighted mean (CWM) and the functional divergence (FDvar) of each single trait and of multiple traits (FDiv). We also measured plant and soil carbon storage. Using a stepwise multiple regression analysis, we assessed which of the functional diversity components best explained carbon storage. 5. Both CWM and FDvar of plant height and wood-specic gravity, but no leaf traits, were retained as predictors of carbon storage in multiple models. Relationships of FDvar of stem traits and FDiv with carbon storage were all negative. The abundance of ve species improved the predictive power of some of the carbon storage models. 6. Synthesis. All three major components of plant functional diversity contributed to explain carbon storage. What matters the most to carbon storage in these ecosystems is the relative abundance of plants with tall, and to a lesser extent dense, stems with a narrow range of variation around these values. No consistent link was found between carbon storage and the leaf traits usually associated with plant resource use strategy. The negative association of trait divergence with carbon storage provided no evidence in support to niche complementarity promoting carbon storage in these forest ecosystems.Fil: Conti, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentin

    Post-burning regeneration of the Chaco seasonally dry forest: germination response of dominant species to experimental heat shock

    No full text
    Plant species of the Chaco seasonally dry forestof central Argentina have presumably been under a lowevolutionary pressure to develop specialized fire-responsetraits, such as heat-stimulated germination. Nevertheless,other historical factors such as seasonal drought and/orendozoochorus dispersal could have led some species todevelop heat-tolerant seeds. Therefore, heat-tolerant germinationshould be more common than heat-stimulatedor heat-sensitive germination. To test this, we exposedseeds of 26 dominant species from the Chaco region to abroad range of experimental heat treatments and incubatedthem for 30 days at 25 °C and 12 h photoperiod. Wethen scored the percent germination and classified themas heat-stimulated, heat-tolerant or heat-sensitive basedon their germination following heat treatments relative tocontrol. Seventeen species showed heat-tolerant germination,including all native graminoids. Seven species showedheat-stimulated germination, under the less-intense heattreatments. Only two species showed heat-sensitive germination.Endozoochory had no influence on germinationresponses. We suggest that, unlike Mediterranean-climateecosystems, fire was not a major evolutionary force in thedevelopment of Chaco forests, and our results provide greater understanding of the potential response of Chacoplant communities in the face of increasingly frequent firesFil: Jaureguiberry, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentin

    Shrub biomass estimation in the semiarid Chaco forest: a contribution to the quantification of an underrated carbon stock

    Get PDF
    Abstract & Context The quantification of biomass of woody plants is at the basis of calculations of forest biomass and carbon stocks. Although there are well-developed allometric models for trees, they do not apply well to shrubs, and shrub-specific allometric models are scarce. There is therefore a need for a standardized methodology to quantify biomass and carbon stocks in open forests and woodlands. & Aims To develop species-specific biomass estimation models for common shrubs, as well as a multispecies shrub model, for the subtropical semiarid Chaco forest of central Argentina. & Methods Eight shrub species (Acacia aroma, Acacia gilliesii, Aloysia gratissima, Capparis atamisquea, Celtis ehrenbergiana, Larrea divaricata, Mimozyganthus carinatus, and Moya spinosa) were selected, and, on average, 30 individuals per species were harvested. Their total individual dry biomass was related with morphometric variables using regression analysis. & Results Crown area as well as crown-shaped variables proved to be the variables with the best performance for both species-specific and multispecies shrub models. These allometric variables are thus recommended for standardized shrub biomass assessments. & Conclusion By accounting for the shrub component of the vegetation, our models provide a way to improve the quantification of biomass and carbon in semiarid open forest and woodlands.Abstract & Context The quantification of biomass of woody plants is at the basis of calculations of forest biomass and carbon stocks. Although there are well-developed allometric models for trees, they do not apply well to shrubs, and shrub-specific allometric models are scarce. There is therefore a need for a standardized methodology to quantify biomass and carbon stocks in open forests and woodlands. & Aims To develop species-specific biomass estimation models for common shrubs, as well as a multispecies shrub model, for the subtropical semiarid Chaco forest of central Argentina. & Methods Eight shrub species (Acacia aroma, Acacia gilliesii, Aloysia gratissima, Capparis atamisquea, Celtis ehrenbergiana, Larrea divaricata, Mimozyganthus carinatus, and Moya spinosa) were selected, and, on average, 30 individuals per species were harvested. Their total individual dry biomass was related with morphometric variables using regression analysis. & Results Crown area as well as crown-shaped variables proved to be the variables with the best performance for both species-specific and multispecies shrub models. These allometric variables are thus recommended for standardized shrub biomass assessments. & Conclusion By accounting for the shrub component of the vegetation, our models provide a way to improve the quantification of biomass and carbon in semiarid open forest and woodlands.Fil: Conti, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Conti, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Enrico, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Enrico, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Casanoves, Fernando. Biometric Unit,; Costa RicaFil: Casanoves, Fernando. Biometric Unit,; Costa RicaFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentin

    Device for the standard measurement of shoot flammability in the field

    No full text
    Fire ecology has been hindered by the lack of comparable, affordable protocols to quantify the flammability of whole plants over large numbers of species.We describe a low-tech device that can be carried to the field and that allows highly standardized measurement of the flammability of whole individuals or portions up to 70 cm long.We illustrate its potential with results for 34 species belonging to different growth forms from central Argentina. The device consists of an 85 ¥ 60 cm half-cut metallic barrel placed horizontally and mounted on a removable metallic structure. It contains three parallel burners, a grill with an attached gauging thermometer and a blowtorch. Burners and blowtorch are connected to a propane?butane gas cylinder. Plant samples are placed on the grill and preheated with the burners for 2 min at 150°C.They are then ignited for 10 s with the blowtorch while the burners are kept on. Four parameters are measured for each sample: maximum temperature reached, burning time, burnt length and burnt biomass percentage. These parameters are used to construct a compound index of flammability for each sample that ranges between 0 (no flammability) and around 3 (maximum flammability).We obtained a wide range of values for flammability and all its components. Most of this variability was accounted for by differences between growth forms and species, rather than by differences at the level of replicates.This suggests that the device and protocol are sensitive enough to detect flammability differences among plants with different functional traits, and at the same time robust enough to produce consistent results among samples with similar traits. A major advantage is that plant architecture is kept almost intact, providing a flammability measure much closer to that of whole individuals in the field than those obtained by other standard protocols in use. The device and protocol presented here should facilitate the acquisition of comparable flammability data over large numbers of species from different floras and ecosystems, potentially contributing to several fields of research, such as functional ecology, evolutionary ecology and vegetation-atmosphere modelling.Fil: Jaureguiberry, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Bertone, Gustavo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba; Argentin

    Twentieth year of the Journal of Vegetation Science: the journal for all vegetation scientists

    No full text
    The Journal of Vegetation Science was launched by the International Association for Vegetation Science (IAVS) in 1990, specifically to be a journal owned and governed by the Association. Now, in its 20th year of publication, it is the reference journal for plant community ecology. Eddy van der Maarel concluded in his editorial of the first issue: ‘‘Vegetation science is rapidly developing towards a general science of plant communities with its own body of theory and an enormous potential for application in the fields of nature conservation and environmental management. . . . Let the Journal of Vegetation Science be a journal for all vegetation scientists’’ (van der Maarel 1990). The world has changed much in those 19 years. So has vegetation science, with the Journal of Vegetation Science drawing together vegetation scientists from almost all the countries of the world and with every approach to the subject. Peter White had been with the Journal of Vegetation Science since it started. He had been an Associate Editor since they existed, and a Chief Editor since they did. He is now taking a break1 from the Journal, primarily because he is overseeing developments in the North Carolina Botanic Garden. This is a good time to thank him for all his work and all his wisdom since 1990.Fil: Wilson, J. Bastow. University of Otago. Botany Department; Nueva ZelandaFil: Chiarucci, Alessandro. University of Siena. Department of Environmental Science “G. Sarfatti”; ItaliaFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Pärtel, Meelis. University Of Tartu.; Estoni

    Microbial recycling of dissolved organic matter confines plant nitrogen uptake to inorganic forms in a semi-arid ecosystem

    No full text
    Plant uptake of dissolved organic nitrogen (DON) has been proposed to explain inconsistency in the ecosystem N balance of semi-arid systems. Nevertheless, direct evidence for an ecologically important role of DON in plant nutrition in these systems remains elusive under field conditions. Here, natural abundance 15N signatures of NO3−, NH4+, DON and whole plants from a semi-arid model forest were analyzed to provide robust estimates of plant N source partitioning and relative N cycling rates under in-situ conditions. Concurrently, architectural and symbiotic root traits were determined to assess their relationship to plant N acquisition strategies. Bayesian isotope mixing models indicated an insignificant contribution of DON to ecosystem plant N nutrition. Nitrate was the dominant plant N source in this ecosystem, while the contribution of NH4+ to plant nutrition varied between herbaceous (26%) and woody plants (8%). The low C:N ratio of the dissolved organic matter pool - ranging from 12.7 to 4.9 within the soil profile ? indicated microbial C-limitation in this ecosystem. Dissolved organic N was significantly enriched in 15N relative to NH4+ and NO3−, corroborating the importance of dissolved organic matter recycling as a cost-effective pathway that simultaneously supplies C and nutrients for microbial metabolism. Plants exclusively depend on inorganic N forms made available through microbial N mineralization and free-living atmospheric N2 fixation, followed by autotrophic nitrification.Fil: Huygens, D.. Ghent University. Isotope Bioscience Laboratory; Países BajosFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Urcelay, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Boeckx, P.. Ghent University. Isotope Bioscience Laboratory; Países Bajo
    corecore