3,399 research outputs found

    High-Mass X-ray Binaries and the Spiral Structure of the Host Galaxy

    Full text link
    We investigate the manifestation of the spiral structure in the distribution of high-mass X-ray binaries (HMXBs) over the host galaxy. We construct the simple kinematic model. It shows that the HMXBs should be displaced relative to the spiral structure observed in such traditional star formation rate indicators as the Halpha and FIR emissions because of their finite lifetimes. Using Chandra observations of M51, we have studied the distribution of X-ray sources relative to the spiral arms of this galaxy observed in Halpha. Based on K-band data and background source number counts, we have separated the contributions from high-mass and low-mass X-ray binaries and active galactic nuclei. In agreement with model predictions, the distribution of HMXBs is wider than that of bright HII regions concentrated in the region of ongoing star formation. However, the statistical significance of this result is low, as is the significance of the concentration of the total population of X-ray sources to the spiral arms. We also predict the distribution of HMXBs in our Galaxy in Galactic longitude. The distribution depends on the mean HMXB age and can differ significantly from the distributions of such young objects as ultracompact HII regions.Comment: 18 pages, 6 figures; Astronomy Letters, Vol. 33, No. 5, 2007, pp. 299-30

    Quantum Pair Creation of Soliton Domain Walls

    Full text link
    A large body of experimental evidence suggests that the decay of the false vacuum, accompanied by quantum pair creation of soliton domain walls, can occur in a variety of condensed matter systems. Examples include nucleation of charge soliton pairs in density waves [eg. J. H. Miller, Jr. et al., Phys. Rev. Lett. 84, 1555 (2000)] and flux soliton pairs in long Josephon junctions. Recently, Dias and Lemos [J. Math. Phys. 42, 3292 (2001)] have argued that the mass mm of the soliton should be interpreted as a line density and a surface density, respectively, for (2+1)-D and (3+1)-D systems in the expression for the pair production rate. As the transverse dimensions are increased and the total mass (energy) becomes large, thermal activation becomes suppressed, so quantum processes can dominate even at relatively high temperatures. This paper will discuss both experimental evidence and theoretical arguments for the existence of high-temperature collective quantum phenomena

    Lifshitz black holes in Brans-Dicke theory

    Get PDF
    We present an exact asymptotically Lifshitz black hole solution in Brans-Dicke theory of gravity in arbitrary n(3)n(\ge 3) dimensions in presence of a power-law potential. In this solution, the dynamical exponent zz is determined in terms of the Brans-Dicke parameter ω\omega and nn. Asymptotic Lifshitz condition at infinity requires z>1z>1, which corresponds to (n1)/(n2)ω<n/(n1)-(n-1)/(n-2) \le \omega < -n/(n-1). On the other hand, the no-ghost condition for the scalar field in the Einstein frame requires 0<z2(n2)/(n3)0<z \le 2(n-2)/(n-3). We compute the Hawking temperature of the black hole solution and discuss the problems encountered and the proposals in defining its thermodynamic properties. A generalized solution charged under the Maxwell field is also presented.Comment: 32 pages, no figure. v2: revised version. Section 3.1 and Appendix B improved. The argument in Appendix A clarified. v3: References added. v4: analysis on the black hole thermodynamical properties corrected. Final version to appear in JHE

    New instability of non-extremal black holes: spitting out supertubes

    Get PDF
    We search for stable bound states of non-extremal rotating three-charge black holes in five dimensions (Cvetic-Youm black holes) and supertubes. We do this by studying the potential of supertube probes in the non-extremal black hole background and find that generically the marginally bound state of the supersymmetric limit becomes metastable and disappears with non-extremality (higher temperature). However near extremality there is a range of parameters allowing for stable bound states, which have lower energy than the supertube-black hole merger. Angular momentum is crucial for this effect. We use this setup in the D1-D5 decoupling limit to map a thermodynamic instability of the CFT (a new phase which is entropically dominant over the black hole phase) to a tunneling instability of the black hole towards the supertube-black hole bound state. This generalizes the results of ArXiv:1108.0411 [hep-th], which mapped an entropy enigma in the bulk to the dual CFT in a supersymmetric setup.Comment: 28 pages + appendix, 15 figures, v2: References added, typos corrected. Version published in JHE

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    Overlapping abundance gradients and azimuthal gradients related to the spiral structure of the Galaxy

    Full text link
    The connection between some features of the metallicity gradient in the Galactic disk, best revealed by Open Clusters and Cepheids, and the spiral structure, is explored. The step-like abrupt decrease in metallicity at 8.5 kpc (with R_0= 7.5 kpc, or at 9.5 kpc if R_0 = 8.5 kpc is adopted) is well explained by the corotation ring-shaped gap in the density of gas, which isolates the internal and external regions of the disk one from the other. This solves a long standing problem of understanding the different chemical characteristics of the inner and outer parts of the disk. The time required to build up the metallicity difference between the two sides of the step is a measure of the minimal life-time of the present grand-design spiral pattern structure, of the order of 3 Gyr. The plateaux observed on each side of the step are interpreted in terms of the large scale radial motion of the stars and of the gas flow induced by the spiral structure. The star-formation rate revealed by the density of open clusters is maximum in the Galactic radial range from 6 to 12 kpc (with an exception of a narrow gap at corotation), coinciding with the region where the 4-arms mode is allowed to exist. We argue that most of the old open clusters situated at large galactocentric radii were born in this inner region where conditions more favorable to star-formation are found. The ratio of α\alpha-elements to Fe of the sample of Cepheids does not vary appreciably with the Galactic radius, which reveals an homogeneous history of star formation. Different arguments are given showing that usual approximations of chemical evolution models, which assume fast mixing of metallicity in the azimuthal direction and ignore the existence of the spiral arms, are a poor ones.Comment: 13 pages, 12 figures, paper accepted by MNRAS main journa
    corecore