15 research outputs found

    The conservation impacts of ecological disturbance : time-bound estimates of population loss and recovery for fauna affected by the 2019–2020 Australian megafires

    Get PDF
    Aim: After environmental disasters, species with large population losses may need urgent protection to prevent extinction and support recovery. Following the 2019–2020 Australian megafires, we estimated population losses and recovery in fire-affected fauna, to inform conservation status assessments and management. Location: Temperate and subtropical Australia. Time period: 2019–2030 and beyond. Major taxa: Australian terrestrial and freshwater vertebrates; one invertebrate group. Methods: From > 1,050 fire-affected taxa, we selected 173 whose distributions substantially overlapped the fire extent. We estimated the proportion of each taxon’s distribution affected by fires, using fire severity and aquatic impact mapping, and new distribution mapping. Using expert elicitation informed by evidence of responses to previous wildfires, we estimated local population responses to fires of varying severity. We combined the spatial and elicitation data to estimate overall population loss and recovery trajectories, and thus indicate potential eligibility for listing as threatened, or uplisting, under Australian legislation. Results: We estimate that the 2019–2020 Australian megafires caused, or contributed to, population declines that make 70–82 taxa eligible for listing as threatened; and another 21–27 taxa eligible for uplisting. If so-listed, this represents a 22–26% increase in Australian statutory lists of threatened terrestrial and freshwater vertebrates and spiny crayfish, and uplisting for 8–10% of threatened taxa. Such changes would cause an abrupt worsening of underlying trajectories in vertebrates, as measured by Red List Indices. We predict that 54–88% of 173 assessed taxa will not recover to pre-fire population size within 10 years/three generations. Main conclusions: We suggest the 2019–2020 Australian megafires have worsened the conservation prospects for many species. Of the 91 taxa recommended for listing/uplisting consideration, 84 are now under formal review through national processes. Improving predictions about taxon vulnerability with empirical data on population responses, reducing the likelihood of future catastrophic events and mitigating their impacts on biodiversity, are critical. © 2022 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 30 including Federation University Australia affiliate “Diana Kuchinke” is provided in this record*

    Animal population decline and recovery after severe fire: Relating ecological and life history traits with expert estimates of population impacts from the Australian 2019-20 megafires

    Get PDF
    Catastrophic megafires can increase extinction risks identifying species priorities for management and policy support is critical for preparing and responding to future fires. However, empirical data on population loss and recovery post-fire, especially megafire, are limited and taxonomically biased. These gaps could be bridged if species' morphological, behavioural, ecological and life history traits indicated their fire responses. Using expert elicitation that estimated population changes following the 2019–20 Australian megafires for 142 terrestrial and aquatic animal species (from every vertebrate class, one invertebrate group), we examined whether expert estimates of fire-related mortality, mortality in the year post-fire, and recovery trajectories over 10 years/three generations post-fire, were related to species traits. Expert estimates for fire-related mortality were lower for species that could potentially flee or shelter from fire, and that associated with fire-prone habitats. Post-fire mortality estimates were linked to diet, diet specialisation, home range size, and susceptibility to introduced herbivores that damage or compete for resources. Longer-term population recovery estimates were linked to diet/habitat specialisation, susceptibility to introduced species species with slower life histories and shorter subadult dispersal distances also had lower recovery estimates. Across animal groups, experts estimated that recovery was poorest for species with pre-fire population decline and more threatened conservation status. Sustained management is likely needed to recover species with habitat and diet specialisations, slower life histories, pre-existing declines and threatened conservation statuses. This study shows that traits could help inform management priorities before and after future megafires, but further empirical data on animal fire response is essential

    The conservation impacts of ecological disturbance:Time-bound estimates of population loss and recovery for fauna affected by the 2019–2020 Australian megafires

    Get PDF
    Aim: After environmental disasters, species with large population losses may need urgent protection to prevent extinction and support recovery. Following the 2019-2020 Australian megafires, we estimated population losses and recovery in fire-affected fauna, to inform conservation status assessments and management. Location: Temperate and subtropical Australia. Time period 2019-2030 and beyond. Major taxa: Australian terrestrial and freshwater vertebrates; one invertebrate group. Methods: From > 1,050 fire-affected taxa, we selected 173 whose distributions substantially overlapped the fire extent. We estimated the proportion of each taxon's distribution affected by fires, using fire severity and aquatic impact mapping, and new distribution mapping. Using expert elicitation informed by evidence of responses to previous wildfires, we estimated local population responses to fires of varying severity. We combined the spatial and elicitation data to estimate overall population loss and recovery trajectories, and thus indicate potential eligibility for listing as threatened, or uplisting, under Australian legislation. Results: We estimate that the 2019-2020 Australian megafires caused, or contributed to, population declines that make 70-82 taxa eligible for listing as threatened; and another 21-27 taxa eligible for uplisting. If so-listed, this represents a 22-26% increase in Australian statutory lists of threatened terrestrial and freshwater vertebrates and spiny crayfish, and uplisting for 8-10% of threatened taxa. Such changes would cause an abrupt worsening of underlying trajectories in vertebrates, as measured by Red List Indices. We predict that 54-88% of 173 assessed taxa will not recover to pre-fire population size within 10 years/three generations. Main conclusions We suggest the 2019-2020 Australian megafires have worsened the conservation prospects for many species. Of the 91 taxa recommended for listing/uplisting consideration, 84 are now under formal review through national processes. Improving predictions about taxon vulnerability with empirical data on population responses, reducing the likelihood of future catastrophic events and mitigating their impacts on biodiversity, are critical

    EAES Recommendations for Recovery Plan in Minimally Invasive Surgery Amid COVID-19 Pandemic

    No full text
    Background: COVID-19 pandemic presented an unexpected challenge for the surgical community in general and Minimally Invasive Surgery (MIS) specialists in particular. This document aims to summarize recent evidence and experts’ opinion and formulate recommendations to guide the surgical community on how to best organize the recovery plan for surgical activity across different sub-specialities after the COVID-19 pandemic. Methods: Recommendations were developed through a Delphi process for establishment of expert consensus. Domain topics were formulated and subsequently subdivided into questions pertinent to different surgical specialities following the COVID-19 crisis. Sixty-five experts from 24 countries, representing the entire EAES board, were invited. Fifty clinicians and six engineers accepted the invitation and drafted statements based on specific key questions. Anonymous voting on the statements was performed until consensus was achieved, defined by at least 70% agreement. Results: A total of 92 consensus statements were formulated with regard to safe resumption of surgery across eight domains, addressing general surgery, upper GI, lower GI, bariatrics, endocrine, HPB, abdominal wall and technology/research. The statements addressed elective and emergency services across all subspecialties with specific attention to the role of MIS during the recovery plan. Eighty-four of the statements were approved during the first round of Delphi voting (91.3%) and another 8 during the following round after substantial modification, resulting in a 100% consensus. Conclusion: The recommendations formulated by the EAES board establish a framework for resumption of surgery following COVID-19 pandemic with particular focus on the role of MIS across surgical specialities. The statements have the potential for wide application in the clinical setting, education activities and research work across different healthcare systems

    Distribution Tables and Federal Tax Policy: A Scoring Index as a Method for Evaluation

    No full text

    Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease.

    Get PDF
    Several risk factors for Crohn's disease have been identified in recent genome-wide association studies. To advance gene discovery further, we combined data from three studies on Crohn's disease (a total of 3,230 cases and 4,829 controls) and carried out replication in 3,664 independent cases with a mixture of population-based and family-based controls. The results strongly confirm 11 previously reported loci and provide genome-wide significant evidence for 21 additional loci, including the regions containing STAT3, JAK2, ICOSLG, CDKAL1 and ITLN1. The expanded molecular understanding of the basis of this disease offers promise for informed therapeutic development.Journal ArticleMeta-AnalysisResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore