881 research outputs found

    Temporal evolution of long-period seismicity at Etna Volcano, Italy, and its relationships with the 2004–2005 eruption

    Get PDF
    Between December 2004 and August 2005, more than 50,000 long-period events (LP) accompanied by very-long period pulses (VLP) were recorded at Mt. Etna, encompassing the effusive eruption which started in September 2004. The observed activity can be explained by the injection of a gas slug formed within the magmatic column into an overlying cavity filled by either magmatic or hydrothermal fluids, thus triggering cavity resonance. Although a large number of LP events exhibit similar waveforms before the eruption, they change significantly during and after the eruption. We study the temporal evolution of the LP-VLP activity in terms of the source movement, change of the waveforms, temporal evolution of the dominant resonance frequencies and the source Q factor and changes in the polarization of the signal. The LP source locations before and after the eruption, respectively, do not move significantly, while a slight movement of the VLP source is found. The intensity of the LP events increases after the eruption as well as their dominant frequency and Q factor, while the polarization of the signals changes from predominantly transversal to pure radial motion. Although in previous studies a link between the observed LP activity and the eruption was not found, these observations suggest that such a link was established at the latter end of the eruptive sequence, most likely as a consequence of a reestablishment of the pressure balance in the plumbing system, after it was undermined due to the discharge of large amounts of resident magma during the eruption. Based on the polarization properties of the signal and geological setting of the area, a fluid-filled crack is proposed as the most likely source geometry. The spectral analysis based on the autoregressive-models (SOMPI) is applied to the signals in order to analyse the resonance frequencies and the source Q-factors. The results suggest water and basalt at low gas volume fraction as the most likely fluids involved in the source process. Using theoretical relations for the “slow waves” radiated from the fluid-filled crack, we also estimate the crack size for both fluids, respectively

    Temporal evolution of Long-Period seismicity at Etna Volcano, Italy, and its relationships with the 2004-2005 eruption

    Get PDF
    Between December 2004 and August 2005, more than 50,000 long-period events (LP) accompanied by very-long period pulses (VLP) were recorded at Mt. Etna, encompassing the effusive eruption which started in September 2004. The observed activity can be explained by the injection of a gas slug formed within the magmatic column into an overlying cavity filled by either magmatic or hydrothermal fluids, thus triggering cavity resonance. Although a large number of LP events exhibit similar waveforms before the eruption, they change significantly during and after the eruption. We study the temporal evolution of the LP-VLP activity in terms of the source movement, change of the waveforms, temporal evolution of the dominant resonance frequencies and the source Q factor and changes in the polarization of the signal. The LP source locations before and after the eruption, respectively, do not move significantly, while a slight movement of the VLP source is found. The intensity of the LP events increases after the eruption as well as their dominant frequency and Q factor, while the polarization of the signals changes from predominantly transversal to pure radial motion. Although in previous studies a link between the observed LP activity and the eruption was not found, these observations suggest that such a link was established at the latter end of the eruptive sequence, most likely as a consequence of a reestablishment of the pressure balance in the plumbing system, after it was undermined due to discharge of large amounts of resident magma during the eruption. Based on the polarization properties of the signal and geological setting of the area, a fluid- filled crack is proposed as the most likely source geometry. The spectral analysis based on the autoregressive-models (SOMPI) is applied to the signals in order to analyse the resonance frequencies and the source Q-factors. The results suggest water and basalt with the low gas volume fraction as the most likely fluids involved in the source process. Using theoretical relations for the “slow waves” radiated from the fluid-filled crack, we also estimate the crack size for both fluids, respectively

    Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Get PDF
    This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy). The array consists of 13 short-period, three-component seismometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coherent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epicentral distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave backazimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This information is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity

    Performances of the UNDERground SEISmic array for the analysis of seismicity in Central Italy

    Get PDF
    This paper presents the first results from the operation of a dense seismic array deployed in the underground Physics Laboratories at Gran Sasso (Central Italy). The array consists of 13 short-period, three-component seis- mometers with an aperture of about 550 m and average sensor spacing of 90 m. The reduced sensor spacing, joined to the spatially-white character of the background noise allows for quick and reliable detection of coher- ent wavefront arrivals even under very poor SNR conditions. We apply high-resolution frequency-slowness and polarization analyses to a set of 27 earthquakes recorded between November, 2002, and September, 2003, at epi- central distances spanning the 20-140 km interval. We locate these events using inversion of P- and S-wave back- azimuths and S-P delay times, and compare the results with data from the Centralized National Seismic Network catalog. For the case of S-wave, the discrepancies among the two set of locations never exceed 10 km; the largest errors are instead observed for the case of P-waves. This observation may be due to the fact that the small array aperture does not allow for robust assessment of waves propagating at high apparent velocities. This informa- tion is discussed with special reference to the directions of future studies aimed at elucidating the location of seismogenetic structures in Central Italy from extended analysis of the micro-seismicity

    Characterization of Strombolian events by using independent component analysis

    Get PDF
    We apply Independent Component Analysis (ICA) to seismic signals recorded at Stromboli volcano. Firstly, we show how ICA works considering synthetic signals, which are generated by dynamical systems. We prove that Strombolian signals, both tremor and explosions, in the high frequency band (>0.5 Hz), are similar in time domain. This seems to give some insights to the organ pipe model generation for the source of these events. Moreover, we are able to recognize in the tremor signals a low frequency component (<0.5 Hz), with a well defined peak corresponding to 30s

    GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

    Get PDF
    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10 11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2-6.0+8.4M\u27 and 19.4-5.9+5.3M (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.12-0.30+0.21. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880-390+450 Mpc corresponding to a redshift of z=0.18-0.07+0.08. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10-23 eV/c2. In all cases, we find that GW170104 is consistent with general relativity

    The ESPRI project: astrometric exoplanet search with PRIMA I. Instrument description and performance of first light observations

    Full text link
    The ESPRI project relies on the astrometric capabilities offered by the PRIMA facility of the Very Large Telescope Interferometer for the discovery and study of planetary systems. Our survey consists of obtaining high-precision astrometry for a large sample of stars over several years and to detect their barycentric motions due to orbiting planets. We present the operation principle, the instrument's implementation, and the results of a first series of test observations. A comprehensive overview of the instrument infrastructure is given and the observation strategy for dual-field relative astrometry is presented. The differential delay lines, a key component of the PRIMA facility which was delivered by the ESPRI consortium, are described and their performance within the facility is discussed. Observations of bright visual binaries are used to test the observation procedures and to establish the instrument's astrometric precision and accuracy. The data reduction strategy for astrometry and the necessary corrections to the raw data are presented. Adaptive optics observations with NACO are used as an independent verification of PRIMA astrometric observations. The PRIMA facility was used to carry out tests of astrometric observations. The astrometric performance in terms of precision is limited by the atmospheric turbulence at a level close to the theoretical expectations and a precision of 30 micro-arcseconds was achieved. In contrast, the astrometric accuracy is insufficient for the goals of the ESPRI project and is currently limited by systematic errors that originate in the part of the interferometer beamtrain which is not monitored by the internal metrology system. Our observations led to the definition of corrective actions required to make the facility ready for carrying out the ESPRI search for extrasolar planets.Comment: 32 pages, 39 figures, Accepted for publication in Astronomy and Astrophysic

    Calibration and sensitivity of the Virgo detector during its second science run

    Full text link
    The Virgo detector is a kilometer-length interferometer for gravitational wave detection located near Pisa (Italy). During its second science run (VSR2) in 2009, six months of data were accumulated with a sensitivity close to its design. In this paper, the methods used to determine the parameters for sensitivity estimation and gravitational wave reconstruction are described. The main quantities to be calibrated are the frequency response of the mirror actuation and the sensing of the output power. Focus is also put on their absolute timing. The monitoring of the calibration data as well as the parameter estimation with independent techniques are discussed to provide an estimation of the calibration uncertainties. Finally, the estimation of the Virgo sensitivity in the frequency-domain is described and typical sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum Gravity (CQG), Corrigendum include

    Virgo calibration and reconstruction of the gravitational wave strain during VSR1

    Get PDF
    Virgo is a kilometer-length interferometer for gravitational waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitational wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detector in-loop response and sensitivity within ~5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be published in Journal of Physics Conference Series (JPCS). Second release: correct typo

    A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo

    Full text link
    We present a method to search for transient GWs using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time-frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of GW candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time-frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7 Proceeding
    corecore