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Abstract. We apply Independent Component Analysis
(ICA) to seismic signals recorded at Stromboli volcano.
Firstly, we show how ICA works considering synthetic sig-
nals, which are generated by dynamical systems. We prove
that Strombolian signals, both tremor and explosions, in the
high frequency band (>0.5 Hz), are similar in time domain.
This seems to give some insights to the organ pipe model
generation for the source of these events. Moreover, we are
able to recognize in the tremor signals a low frequency com-
ponent (<0.5 Hz), with a well defined peak corresponding to
30 s.

1 Introduction

The classical procedure to construct physical models is sim-
ple and well established. Firstly, rough but explanatory mo-
dels are inferred from phenomenology. At this preliminary
stage, many possible intuitive pictures live together. They
are used to reproduce, on laboratory scale, all the relevant
observational aspects. The experiments are, in general, re-
producible and some physical laws can be established. These
seminal models are improved and discriminated according
to their capability to provide new phenomena to test expe-
rimentally. There are, however, physical systems for which
it is impossible to proceed in this way. In fact, even simple
phenomenological aspects cannot be reproduced on labora-
tory scale, both for practical and conceptual reasons. These
systems are characterized by strong nonlinear behaviour that
involves many time and spatial length scales.

Geophysical systems belong to this class. In this and simi-
lar cases, people speak about observational data rather than
experimental data. Sequences, signals, messages, texts, con-
figurations are examples of observational data. Among them,
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an important role is played by the observations (measure-
ments) made in the course of the time, i.e. scalar time series.
We can associate, in a natural way, the concepts of complexi-
ty, statistics, ergodicity to these series in order to distinguish
them, quantitatively. All the sequences can be described, in
a formal way, by the unifying concept of Dynamical System
(DS). Many theorems and mathematical devices have been
elaborated to study DSs. However, they give powerful me-
thods to study asymptotic properties. In the real experimental
cases, we start from finite sequences, sometimes very long,
and we want to obtain the model. The problem is to extract
relevant properties from one or more of the available scalar
finite sequences. Then, numerical analysis arises to under-
stand all important parts of information included within se-
ries. A review of many numerical methods of nonlinear sig-
nal processing developed in the recent years can be found in
Abarbanel(1996).

In many cases, sequences can contain information relative
to different DSs or sources or signals: therefore a preliminary
step is to recognize independent components. The methods
based on information theory are natural to use in this research
field. The concept of entropy plays a particular role: it is very
general and gives a powerful methodology to distinguish the
complexities associated to different DSs.

Independent Component Analysis (ICA) is an entropy
based technique, useful to separate mixtures of signals (for
more details seeHyvärinen et al.(2001) and many papers
therein cited). ICA was introduced in the early 1980s in a
neurophysiological setting (Hérault, 1984). The introduction
of FastICA algorithm (Hyvärinen and Oja, 1997) contributed
to the application of ICA to large scale problems due to its
computational efficiency.

In the next section, we shall give the mathematical set-
ting of ICA. Here, we consider the problem to understand
the behaviour of ICA method with respect to scalar time se-
ries generated by geophysical systems. Since they can be
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interpreted as time evolution of a suitable dynamical system,
we start clarifying the performance of ICA when it is applied
to known DSs. We select different DSs equations representa-
tive of large classes, namely linear, nonlinear in the regime of
limit cycle, and stochastic DSs, and we use ICA to make sep-
aration of the generated synthetic signals. After this section,
we show the application of ICA to observational recorded
time series of Stromboli volcano.

2 Independent component analysis

ICA is a method to find underlying factors or components
from multivariate (multidimensional) statistical data.

It is a well defined method in speech context, to solve the
classical problem of cocktail party. Imagine to have some
people speaking in a room and some microphones recording
their voice. The goal of ICA is to extract, from the mixtures
of voices, step by step, each independent speaker.

Let us explain in brief the mathematical setting on which
ICA is based. We can suppose to havem different recorded
time seriesx, that we hypothesize to be the linear superpo-
sition of n mutually independent unknown sourcess, due to
different mixing, represented by a constant unknownm× n
matrix A. This mixing is essentially due to path, noise,
instrumental transfer-functions, etc. The hypothesis is to
have instantaneous linear mixtures of some independent dy-
namical systems. If the mixing has to be linear, nothing is
assumed with respect to the sources, which can be linear or
nonlinear.

Formally, the mixing model is written as

x = As+ µ. (1)

The termµ takes into account the presence of an additive
noise, often omitted in Eq. (1), because it can be incorporated
in the sum as one of the source signals. In addition to the
source independence request, ICA assumes that the number
of available different mixturesm is at least as large as the
number of sourcesn. Under these hypothesis, the ICA goal
is to obtain a separating matrixW = (w1, ..., wm)T , inverse
of A, in such a way that the vector

y = Wx (2)

is an estimatey ' s of the original independent source sig-
nals. We have to remark that the hypothesis of instantaneous
mixtures means that we are able to extract “modes” having
the same velocity. As a consequence, no delay among the
recordings is allowed. In presence of delay, as we will see in
the Sect.4, it is required to align the recorded signals.

We stress that ICA is a statistical model. In other words,
from the central limit theorem, we know that the distribu-
tion of a sum of independent random variables tends towards
a gaussian distribution, under certain conditions. The main
idea of the ICA model is to maximize the non-Gaussianity
(super-Gaussianity or sub-Gaussianity) to extract the inde-
pendent components. The separation is achieved on the basis

of their statistical independence, evaluated by using 4th order
statistical properties.

In the following, we shall use the fixed-point algorithm,
namely FastICA (Hyvärinen and Oja, 1997). The FastICA
learning rule finds a direction, i.e. a unit vectorw such that
the projectionwT x maximizes independence of the single es-
timated sourcey. Independence is here measured by the ap-
proximation of the negentropy, that is a measure of nonGaus-
sianity, given by

JG(w) = [E{G(wT x)} − E{G(ν)}]2, (3)

wherew is anm-dimensional (weight) vector,x represents
our mixture of signals,E{·} indicates the expectation value,
E{(wT x)2

} = 1 means variance set to 1,G is a suitable ap-
proximating contrast function,ν is a standardized Gaussian
random variable.

Maximizing JG allows to find “one” independent compo-
nent, or projection pursuit direction. The algorithm requires
a preliminary whitening of the data: the observed variablex
is linearly transformed to a new variablev with zero-mean
and unit variance. Whitening can always be accomplished
by e.g. Principal Component Analysis (PCA). This method
involves a mathematical procedure that transforms a number
of (possibly) correlated variables into a (smaller) number of
uncorrelated variables called principal components. The first
principal component accounts for as much of the variability
in the data as possible, and each succeeding component ac-
counts for as much of the remaining variability as possible.
Traditionally, principal component analysis is performed on
covariance matrix (Bishop, 1995).

The one-unit “fixed-point” algorithm for finding a row
vectorw is

wi
∗

= E[vg(wT
i v)] − E[g′(wT

i v)]wi

wi = w∗

i /‖w∗

i ‖, (4)

where g(·) is a suitable nonlinear function, in our case
g(y) = tanh(y), andg′(y) is its derivative with respect to
y. This nonlinear function is introduced to analyse nonlinear
time series by means of high-order statistics. The cited al-
gorithm can be generalized to estimate several independent
components, which have to be orthonormal one to each other.

ICA is considered a generative model. This means that it
describes how the observed data are generated by a process of
mixing the components. The basic ICA model, summarizing,
requires the following assumptions:

– all the independent components, with the possible ex-
ception of one component, must be non-Gaussian (Bell
and Sejnowski, 1995; Karhunen, 1996);

– the number of the observed linear mixtures must be at
least as large as the number of independent components;

– the matrixA must be of full column rank.
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We have used the basic model of ICA. There are, how-
ever, many generalizations born along the time. Several ap-
proaches have been proposed to apply ICA when the number
of mixtures is less than the number of sources (Roweis, 2000;
Jang and Leen, 2003). Other approaches are introduced to
accomplish separation of convolved signals (signals with de-
lays and echoes). Moreover, another interesting extension of
the ICA could be used in the case of nonlinear mixing (Pa-
junen and Karhunen, 1997; Hyvärinen and Pajunen, 1999).
In the next section, to show the effectiveness of basic ICA
for linear mixing, we consider the ICA application to some
classes of DSs.

3 Dynamical Systems

DSs can be considered a general representation of large class
of sequences. Then, it is very interesting and explicative as
a first step to apply ICA to DSs. We consider, in particular,
three types of DSs: linear, nonlinear in the regime of limit
cycle, and stochastic systems, taking into account both DSs
with few and infinite degrees of freedom. The linear case
makes clear how ICA works. Limit cycle and stochastic sys-
tems have characteristic behaviour that can be found in many
geophysical systems. We have restricted our analysis to lin-
ear/nonlinear systems which are linearly superposed. We ex-
clude nonlinear superpositions from our analysis. They have
to be treated using a different methodology (Hyvärinen and
Pajunen, 1999). In fact, we have not considered nonlinear
systems developing chaotic behaviour as for example Rossler
attractor, in which the z-component is not well separated be-
cause of the nonlinear contribution of the xz term (Ciaramella
et al., 2002).

Generally, DSs are described by a first order equation sys-
tem:

dx(t)

dt
= F(x(t)) (5)

where F(x(t)) is a linear, nonlinear or stochastic field.
In particular for stochastic systems, we consider diffusive

stochastic processes described by the following equation:

dx = [v(x, t)]dt + εdW (6)

where v(x, t) is a field (drift) and dW is a Wiener process.

3.1 Linear dynamical systems

The linear systems that we analyse are single and coupled
harmonic oscillators. It is enough to consider two coupled
oscillators, because the behaviour of a system with many os-
cillators is completely equivalent to the previous one. We
have made many different experiments on mixtures gener-
ated by these systems. We illustrate:

– the separation of an harmonic oscillator and an additive
Gaussian noise;

– the separation of coupled oscillators, in beating regime,
one harmonic oscillator and a Gaussian noise.
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Fig. 1. Separation of a mixture of an harmonic oscillator (0.01Hz

frequency) and Gaussian noise (SNR is −20db); time (in number
of points) is on x-axis, dimensionless amplitude is on y-axis: a)
original sources; b) mixed signals; c) separated signals.
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Fig. 2. Separation of the mixture of two coupled harmonic oscilla-
tors, one harmonic oscillator and Gaussian noise: a) source signals;
b) mixed signals; c)separated signals;

We can observe in (Fig.1) how ICA is able to extract the
harmonic oscillator from Gaussian noise with a very low
signal to noise ratio (SNR = −20db). Similar results are
achieved even considering different noise.

In Fig.2 we report the results related to the second exper-
iment. We easily recognize as extracted signals the standard
normal modes, a single harmonic oscillator and the additive
noise, though the low SNR.

3.2 Nonlinear dynamical systems

We consider a particular nonlinear oscillator, i.e. the An-
dronov oscillator (Andronov et al., 1966). This oscillator is
a nonlinear system that generates, with suitable parameters,
a limit cycle which is approached asymptotically by all other
phase paths. The limit cycle is dynamically stable. It is rep-

Fig. 1. Separation of a mixture of an harmonic oscillator (0.01 Hz
frequency) and Gaussian noise (SNR is−20 db); time (in number
of points) is on x-axis, dimensionless amplitude is on y-axis:(a)
original sources;(b) mixed signals;(c) separated signals.

Moreover, ICA contains the following ambiguities or in-
determinacies:

– we cannot determine the variances (proportional to
energies) of the independent components;

– we cannot determine the order of the independent com-
ponents.

We have used the basic model of ICA. There are, how-
ever, many generalizations born along the time. Several ap-
proaches have been proposed to apply ICA when the number
of mixtures is less than the number of sources (Roweis, 2000;
Jang and Leen, 2003). Other approaches are introduced to
accomplish separation of convolved signals (signals with de-
lays and echoes). Moreover, another interesting extension of
the ICA could be used in the case of nonlinear mixing (Pa-
junen and Karhunen, 1997; Hyvärinen and Pajunen, 1999).
In the next section, to show the effectiveness of basic ICA
for linear mixing, we consider the ICA application to some
classes of DSs.

3 Dynamical systems

DSs can be considered a general representation of large class
of sequences. Then, it is very interesting and explicative as
a first step to apply ICA to DSs. We consider, in particular,
three types of DSs: linear, nonlinear in the regime of limit
cycle, and stochastic systems, taking into account both DSs
with few and infinite degrees of freedom. The linear case
makes clear how ICA works. Limit cycle and stochastic sys-
tems have characteristic behaviour that can be found in many
geophysical systems. We have restricted our analysis to li-
near/nonlinear systems which are linearly superposed. We
exclude nonlinear superpositions from our analysis. They
have to be treated using a different methodology (Hyvärinen
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We can observe in (Fig.1) how ICA is able to extract the
harmonic oscillator from Gaussian noise with a very low
signal to noise ratio (SNR = −20db). Similar results are
achieved even considering different noise.

In Fig.2 we report the results related to the second exper-
iment. We easily recognize as extracted signals the standard
normal modes, a single harmonic oscillator and the additive
noise, though the low SNR.

3.2 Nonlinear dynamical systems

We consider a particular nonlinear oscillator, i.e. the An-
dronov oscillator (Andronov et al., 1966). This oscillator is
a nonlinear system that generates, with suitable parameters,
a limit cycle which is approached asymptotically by all other
phase paths. The limit cycle is dynamically stable. It is rep-

Fig. 2. Separation of the mixture of two coupled harmonic oscilla-
tors, one harmonic oscillator and Gaussian noise:(a)source signals;
(b) mixed signals;(c) separated signals.

and Pajunen, 1999). In fact, we have not considered non-
linear systems developing chaotic behaviour as for example
Rössler attractor, in which the z-component is not well se-
parated because of the nonlinear contribution of the xz term
(Ciaramella et al., 20021).

Generally, DSs are described by a first order equation sy-
stem:

dx(t)

dt
= F(x(t)), (5)

whereF(x(t)) is a linear, nonlinear or stochastic field.
In particular for stochastic systems, we consider diffusive

stochastic processes described by the following equation:

dx = [v(x, t)]dt + εdW, (6)

wherev(x, t) is a field (drift),dW is a Wiener process andε
is the diffusion coefficient.

3.1 Linear dynamical systems

The linear systems that we analyse are single and coupled
harmonic oscillators. It is enough to consider two coupled
oscillators, because the behaviour of a system with many
oscillators is completely equivalent to the previous one. We
have made many different experiments on mixtures genera-
ted by these systems. We illustrate:

– the separation of an harmonic oscillator and an additive
Gaussian noise;

– the separation of coupled oscillators, in beating regime,
one harmonic oscillator and a Gaussian noise.

1Ciaramella, A., De Lauro, E., De Martino, S., Falanga, M., and
Tagliaferri, R.: Independent Component Analysis and Dynamical
Systems, Salerno University, J. Mach. Learn. Res., preprint sub-
mitted, 2002.
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resentative of many nonlinear systems with feedback. As we
see in the following, this behaviour can be associated to some
interesting natural systems. The equations of the Andronov
oscillator with natural frequency ω0, in the suitable form, are:

ẍ + 2h1ẋ + ω2

0
x = 0 if x < b (7)

ẍ− 2h2ẋ + ω2

0
x = 0 if x > b. (8)

The nonlinearity is contained in a suitable threshold b ruling
the self-coupling. We fix b = −1; h1 and h2 are respectively
dissipative and constructive parameters.
By using different parameters and threshold, the Andronov
oscillator has different behaviours. In fact, if the threshold
is negative, then we can have a limit cycle or forcing oscil-
lations, while, if the threshold is positive, no limit cycle is
obtained. In the other cases, for the other parameters, we
have:

– 0 < h1 < h2 < 1: it does not have a limit cycle for any
threshold;

– b = −1 and 0 < h2 < h1 < 1: it does have a limit
cycle for any initial conditions;

– b = −1 e 0 < h2 h1 > 1: it does have a limit cycle for
any initial conditions.

We show a representative example to illustrate the inter-
esting properties of ICA when it is applied to self-oscillating
nonlinear systems. In this experiment, we consider two lin-
early coupled Andronov oscillators with frequency respec-
tively of 0.93Hz and 1.1Hz, one Andronov oscillator with
frequency of 0.9Hz and Gaussian noise. The SNR in this
case is −20 db. Applying the ICA we obtain four separated
signals (Fig.3).

In conclusion linearly coupled Andronov oscillators are
well separated by ICA both among them and from superim-
posed noise. This experiment shows the power of ICA that is
able, as in the linear case regarding the normal modes, to ex-
tract the independent limit cycles in time domain. We stress
that it is not trivial because the nonlinear differential equa-
tions cannot be solved and FFT, due to the nonlinearity of
the problem, looses its efficacy. If we lower SNR under −20
db the separation of noise is not so optimal as in linear case.

3.3 Stochastic systems

The third class of systems are stochastic diffusive processes.
The archetype of models is represented by a simple symmet-
ric bistable potential (double-well) driven by both an addi-
tive random noise, i.e. white and Gaussian, and an exter-
nal periodic bias. Given these features, the response of the
system undergoes resonance-like behaviour as a function of
the noise level; hence the name stochastic resonance (Gam-
maitoni et al., 1998). Formally, if we consider the Langevin
equation with a small periodic forcing, we obtain:

dx = [x(a− x2) + Acos(Ωt)]dt + εdW (9)
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Fig. 3. Separation of the mixtures of two linearly coupled Andronov
oscillators, one Andronov oscillator and Gaussian noise: a) source
signals; b) mixed signals; c)separated signals.
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process described by eq. 9; b) z(t) described by eq. 10.

where dW is a Wiener process, i.e. a Gaussian process with
zero mean and unitary variance; x is a dimensionless physi-
cal variable; a is a parameter related to the double-well po-
tential, A is the amplitude, Ω the angular frequency of the
external periodical forcing, and ε is the diffusion coefficient.

This system is compared with another that displays a sim-
ilar frequency content. The latter, denoted as z(t), is de-
scribed by the following equations:

ẍ = −Ω2x

dy = νdW (10)
z(t) = Ax(t) + By(t)

where the first equation is a simple harmonic oscillator with
angular frequency Ω; the second is a Wiener process; the
third is the superposition of the two, according to the coeffi-
cient A, B. If we choose Ω equal to the angular frequency of
the stochastic process, in the regime of resonance, we obtain
that z(t) has a similar frequency content as x(t) (see Fig.4).

As one can see in Fig.5, this case is very impressive,
namely the separation is optimal. ICA separates low-
dimensional and high-dimensional systems, i.e. harmonic
oscillator and both stochastic resonance and Gaussian noise,

Fig. 3. Separation of the mixtures of two linearly coupled Andronov
oscillators, one Andronov oscillator and Gaussian noise:(a) source
signals;(b) mixed signals;(c) separated signals.

We can observe in (Fig.1) how ICA is able to extract
the harmonic oscillator from Gaussian noise with a very low
signal to noise ratio (SNR= −20 db). Similar results are
achieved even considering different noise.

In Fig. 2, we report the results related to the second expe-
riment. We easily recognize as extracted signals the standard
normal modes, a single harmonic oscillator and the additive
noise, though the low SNR.

3.2 Nonlinear dynamical systems

We consider a particular nonlinear oscillator, i.e. the An-
dronov oscillator (Andronov et al., 1966). This oscillator is
a nonlinear system that generates, with suitable parameters,
a limit cycle which is approached asymptotically by all other
phase paths. The limit cycle is dynamically stable. It is re-
presentative of many nonlinear systems with feedback. As
we see in the following, this behaviour can be associated to
some interesting natural systems. The equations of the An-
dronov oscillator with natural frequencyω0, in the suitable
form, are:

ẍ + 2h1ẋ + ω2
0x = 0 if x < b

ẍ − 2h2ẋ + ω2
0x = 0 if x > b. (7)

The nonlinearity is contained in a suitable thresholdb ruling
the self-coupling. We fixb = −1; h1 andh2 are respectively
dissipative and constructive parameters.

By using different parameters and threshold, the Andronov
oscillator has different behaviours. In fact, if the threshold
is negative, then we can have a limit cycle or forcing oscil-
lations, while, if the threshold is positive, no limit cycle is
obtained. In the other cases, for the other parameters, we
have:

– 0 < h1 < h2 < 1: it does not have a limit cycle for any
threshold;
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resentative of many nonlinear systems with feedback. As we
see in the following, this behaviour can be associated to some
interesting natural systems. The equations of the Andronov
oscillator with natural frequency ω0, in the suitable form, are:

ẍ + 2h1ẋ + ω2

0
x = 0 if x < b (7)

ẍ− 2h2ẋ + ω2

0
x = 0 if x > b. (8)

The nonlinearity is contained in a suitable threshold b ruling
the self-coupling. We fix b = −1; h1 and h2 are respectively
dissipative and constructive parameters.
By using different parameters and threshold, the Andronov
oscillator has different behaviours. In fact, if the threshold
is negative, then we can have a limit cycle or forcing oscil-
lations, while, if the threshold is positive, no limit cycle is
obtained. In the other cases, for the other parameters, we
have:

– 0 < h1 < h2 < 1: it does not have a limit cycle for any
threshold;

– b = −1 and 0 < h2 < h1 < 1: it does have a limit
cycle for any initial conditions;

– b = −1 e 0 < h2 h1 > 1: it does have a limit cycle for
any initial conditions.

We show a representative example to illustrate the inter-
esting properties of ICA when it is applied to self-oscillating
nonlinear systems. In this experiment, we consider two lin-
early coupled Andronov oscillators with frequency respec-
tively of 0.93Hz and 1.1Hz, one Andronov oscillator with
frequency of 0.9Hz and Gaussian noise. The SNR in this
case is −20 db. Applying the ICA we obtain four separated
signals (Fig.3).

In conclusion linearly coupled Andronov oscillators are
well separated by ICA both among them and from superim-
posed noise. This experiment shows the power of ICA that is
able, as in the linear case regarding the normal modes, to ex-
tract the independent limit cycles in time domain. We stress
that it is not trivial because the nonlinear differential equa-
tions cannot be solved and FFT, due to the nonlinearity of
the problem, looses its efficacy. If we lower SNR under −20
db the separation of noise is not so optimal as in linear case.

3.3 Stochastic systems

The third class of systems are stochastic diffusive processes.
The archetype of models is represented by a simple symmet-
ric bistable potential (double-well) driven by both an addi-
tive random noise, i.e. white and Gaussian, and an exter-
nal periodic bias. Given these features, the response of the
system undergoes resonance-like behaviour as a function of
the noise level; hence the name stochastic resonance (Gam-
maitoni et al., 1998). Formally, if we consider the Langevin
equation with a small periodic forcing, we obtain:

dx = [x(a− x2) + Acos(Ωt)]dt + εdW (9)

a)

0 2000 4000 6000 8000 10000
−10

0

10

0 2000 4000 6000 8000 10000
−20

0

20

0 2000 4000 6000 8000 10000
−20

0

20

0 2000 4000 6000 8000 10000
−500

0

500

Time (n° of points)

A
m

pl
itu

de

0 2000 4000 6000 8000 10000
−500

0

500

0 2000 4000 6000 8000 10000
−100

0

100

0 2000 4000 6000 8000 10000
−200

0

200

0 2000 4000 6000 8000 10000
−500

0

500

Time (n° of points)

A
m

pl
itu

de

b)

0 2000 4000 6000 8000 10000
−2

0

2

0 2000 4000 6000 8000 10000
−2

0

2

0 2000 4000 6000 8000 10000
−2

0

2

0 2000 4000 6000 8000 10000
−5

0

5

Time (n° of points)

A
m

pl
itu

de

c)

Fig. 3. Separation of the mixtures of two linearly coupled Andronov
oscillators, one Andronov oscillator and Gaussian noise: a) source
signals; b) mixed signals; c)separated signals.
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Fig. 4. Power Spectrum Density: a) a generic story of stochastic
process described by eq. 9; b) z(t) described by eq. 10.

where dW is a Wiener process, i.e. a Gaussian process with
zero mean and unitary variance; x is a dimensionless physi-
cal variable; a is a parameter related to the double-well po-
tential, A is the amplitude, Ω the angular frequency of the
external periodical forcing, and ε is the diffusion coefficient.

This system is compared with another that displays a sim-
ilar frequency content. The latter, denoted as z(t), is de-
scribed by the following equations:

ẍ = −Ω2x

dy = νdW (10)
z(t) = Ax(t) + By(t)

where the first equation is a simple harmonic oscillator with
angular frequency Ω; the second is a Wiener process; the
third is the superposition of the two, according to the coeffi-
cient A, B. If we choose Ω equal to the angular frequency of
the stochastic process, in the regime of resonance, we obtain
that z(t) has a similar frequency content as x(t) (see Fig.4).

As one can see in Fig.5, this case is very impressive,
namely the separation is optimal. ICA separates low-
dimensional and high-dimensional systems, i.e. harmonic
oscillator and both stochastic resonance and Gaussian noise,

Fig. 4. Power Spectrum Density:(a) a generic story of stochastic
process described by Eq. (8); (b) z(t) described by Eq. (9).

– b = −1 and 0< h2 < h1 < 1: it does have a limit
cycle for any initial conditions;

– b = −1 e 0< h2 h1 > 1: it does have a limit cycle for
any initial conditions.

We show a representative example to illustrate the inte-
resting properties of ICA when it is applied to self-oscillating
nonlinear systems. In this experiment, we consider two li-
nearly coupled Andronov oscillators with frequency respec-
tively of 0.93Hz and 1.1 Hz, one Andronov oscillator with
frequency of 0.9 Hz and Gaussian noise. The SNR in this
case is−20 db. Applying the ICA we obtain four separated
signals (Fig.3).

In conclusion linearly coupled Andronov oscillators are
well separated by ICA both among them and from superim-
posed noise. This experiment shows the power of ICA that is
able, as in the linear case regarding the normal modes, to ex-
tract the independent limit cycles in time domain. We stress
that it is not trivial because the nonlinear differential equa-
tions cannot be solved and FFT, due to the nonlinearity of
the problem, looses its efficacy. If we lower SNR under−20
db the separation of noise is not so optimal as in linear case.

3.3 Stochastic systems

The third class of systems are stochastic diffusive processes.
The archetype of models is represented by a simple symme-
tric bistable potential (double-well) driven by both an ad-
ditive random noise, i.e. white and Gaussian, and an exter-
nal periodic bias. Given these features, the response of the
system undergoes resonance-like behaviour as a function of
the noise level; hence the name stochastic resonance (Gam-
maitoni et al., 1998). Formally, if we consider the Langevin
equation with a small periodic forcing, we obtain:

dx = [x(a − x2) + Acos(�t)]dt + εdW, (8)

wheredW is a Wiener process, i.e. a Gaussian process with
zero mean and unitary variance;x is a dimensionless physi-
cal variable;a is a parameter related to the double-well po-
tential, A is the amplitude,� the angular frequency of the
external periodical forcing, andε is the diffusion coefficient.

This system is compared with another that displays a si-
milar frequency content. The latter, denoted asz(t), is de-
scribed by the following equations:
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Fig. 5. Separation of the mixture of linear oscillator with frequency
of 0.003Hz with an additive Gaussian noise and stochastic reso-
nance with the same resonance frequency: a) source signals; b)
mixed signals; c) extracted components.

also in presence of a very similar frequency content. Same
results are achieved using different kinds of noise (e.g. uni-
form noise). Obviously, ICA is not able to recognize the
number of degrees of freedom and if we consider real sys-
tems for which we have not ”a priori” knowledge, we must
add to ICA other independent methods (De Martino et al.,
2002c).

We should note that linear methods based on FFT fail,
because they do not distinguish the systems underlying our
mixtures, describing the observed spectra as due to the same
DS. In that framework, a stochastic resonance is not at all
different from a simple oscillator with noise. The ICA well
distinguishes the case in which the harmonic oscillator is lin-
early superposed to noise from the case in which the FFT
peak is generated by a stochastic behaviour, i.e. stochastic
resonance.

Now we can draw our conclusions about the explicative
synthetic examples. We have applied ICA to some dynami-
cal systems; firstly to linear and nonlinear systems with few
degrees of freedom, and then to infinite degrees of freedom
systems, namely diffusion processes in the regime of stochas-
tic resonance.
Regarding the linear systems, we have obtained optimal sep-
aration from very high superposed noise. Furthermore, the
ICA acts as Fast Fourier Transform but in time domain since
it gives us the normal modes of the system.
The performance of ICA is valuable also in the case of non-
linear systems where we separate coupled Andronov oscil-
lators, not trivial from the point of view of dynamical sys-
tems. Also in these experiments the separation from noise is
well made. The experiments with stochastic resonance are
very impressive: the superposed periodic and stochastic sig-
nals are completely separated, i.e. ICA perfectly recognizes
the different superposed dynamical systems also when the
Fourier Transform is irresolute (insensitive). As a conclusive
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Fig. 6. In the upper figure, 15 minutes of the vertical component of
broadband event is plotted (amplitudes in adimensional unit). It was
recorded at T1 station on September 19

th at 22:00, during the ex-
periment performed in 1997, where 21 three-component broadband
seismometers were deployed on the flanks of the volcano, grouped
into three rings at different levels: Top, Middle, Bottom stations. In
the lower figure, the same event is filtered in the band 0.02−0.5Hz,
in order to make evident the waveform of the explosions superposed
to background tremor.

remark we can say that ICA is a method to apply a priori as
a pre-analysis to scalar experimental series, namely it allows
to recognize if the scalar series contain one or more indepen-
dent signals.

4 Application of ICA to Strombolian events

We study the seismic signals recorded at Stromboli volcano.
This volcano is characterized by basaltic eruptions. In these
eruptions, the relative motion of gas with respect to the fluid
produces either an annular flow (Hawaian Fire Fountains)
or a Slug flow (Strombolian explosions). In fact, the typi-
cal seismic signature of Stromboli is the continuous volcanic
tremor (continuous vibration of the ground around the vol-
cano) due to degassing to which repeating explosion quakes
are superposed (see Fig.6).
Tremor and explosions have a very similar frequency con-
tent. In fact, both the behaviours are generated by complex
processes of magma flow and turbulent degassing.

Despite many studies (e.g. Chouet et al., 1997, 1999,
2003), the dynamics underlying the generation of these be-
haviours is not yet well understood.

In our studies, we have applied ICA to Strombolian events
considering both short-period (0.5 − 50Hz) and broadband
(0.02 − 50Hz) recorded seismograms. Strombolian signals,
due to their stationarity, are suitable to apply ICA. The aim
is to decompose, if it is possible, recorded series into statis-
tically independent components. In this way, we get infor-
mation about the ”modes” involved in the full dynamics and
constrain source geometry and mechanism. The analysis will
be carried on explosions and tremor, separately.
In order to avoid any delay among recording stations located
in different places, the seismic traces are aligned using the

Fig. 5. Separation of the mixture of linear oscillator with frequency
of 0.003 Hz with an additive Gaussian noise and stochastic reso-
nance with the same resonance frequency:(a) source signals;(b)
mixed signals;(c) extracted components.

ẍ = −�2x

dy = εdW (9)

z(t) = Ax(t) + By(t),

where the first equation is a simple harmonic oscillator with
angular frequency�; the second is a Wiener process; the
third is the superposition of the two, according to the coeffi-
cientA, B. If we choose� equal to the angular frequency of
the stochastic process, in the regime of resonance, we obtain
thatz(t) has a similar frequency content asx(t) (see Fig.4).

As one can see in Fig.5, this case is very impres-
sive, namely the separation is optimal. ICA separates low-
dimensional and high-dimensional systems, i.e. harmonic os-
cillator and both stochastic resonance and Gaussian noise,
also in presence of a very similar frequency content. Same
results are achieved using different kinds of noise (e.g. uni-
form noise). Obviously, ICA is not able to recognize the
number of degrees of freedom and if we consider real sy-
stems for which we have not “a priori” knowledge, we must
add to ICA other independent methods (De Martino et al.,
2002c).

We should note that linear methods based on FFT fail,
because they do not distinguish the systems underlying our
mixtures, describing the observed spectra as due to the same
DS. In that framework, a stochastic resonance is not at all
different from a simple oscillator with noise. The ICA well
distinguishes the case in which the harmonic oscillator is li-
nearly superposed to noise from the case in which the FFT
peak is generated by a stochastic behaviour, i.e. stochastic
resonance.

Now we can draw our conclusions about the explicative
synthetic examples. We have applied ICA to some dynami-
cal systems; firstly to linear and nonlinear systems with few
degrees of freedom, and then to infinite degrees of freedom
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Fig. 5. Separation of the mixture of linear oscillator with frequency
of 0.003Hz with an additive Gaussian noise and stochastic reso-
nance with the same resonance frequency: a) source signals; b)
mixed signals; c) extracted components.

also in presence of a very similar frequency content. Same
results are achieved using different kinds of noise (e.g. uni-
form noise). Obviously, ICA is not able to recognize the
number of degrees of freedom and if we consider real sys-
tems for which we have not ”a priori” knowledge, we must
add to ICA other independent methods (De Martino et al.,
2002c).

We should note that linear methods based on FFT fail,
because they do not distinguish the systems underlying our
mixtures, describing the observed spectra as due to the same
DS. In that framework, a stochastic resonance is not at all
different from a simple oscillator with noise. The ICA well
distinguishes the case in which the harmonic oscillator is lin-
early superposed to noise from the case in which the FFT
peak is generated by a stochastic behaviour, i.e. stochastic
resonance.

Now we can draw our conclusions about the explicative
synthetic examples. We have applied ICA to some dynami-
cal systems; firstly to linear and nonlinear systems with few
degrees of freedom, and then to infinite degrees of freedom
systems, namely diffusion processes in the regime of stochas-
tic resonance.
Regarding the linear systems, we have obtained optimal sep-
aration from very high superposed noise. Furthermore, the
ICA acts as Fast Fourier Transform but in time domain since
it gives us the normal modes of the system.
The performance of ICA is valuable also in the case of non-
linear systems where we separate coupled Andronov oscil-
lators, not trivial from the point of view of dynamical sys-
tems. Also in these experiments the separation from noise is
well made. The experiments with stochastic resonance are
very impressive: the superposed periodic and stochastic sig-
nals are completely separated, i.e. ICA perfectly recognizes
the different superposed dynamical systems also when the
Fourier Transform is irresolute (insensitive). As a conclusive

0 100 200 300 400 500 600 700 800 900
−4

−3

−2

−1

0
x 10

4

0 100 200 300 400 500 600 700 800 900

−5000

0

5000

Time (s)

Am
pli

tu
de

 (c
ou

nt
s)

Fig. 6. In the upper figure, 15 minutes of the vertical component of
broadband event is plotted (amplitudes in adimensional unit). It was
recorded at T1 station on September 19

th at 22:00, during the ex-
periment performed in 1997, where 21 three-component broadband
seismometers were deployed on the flanks of the volcano, grouped
into three rings at different levels: Top, Middle, Bottom stations. In
the lower figure, the same event is filtered in the band 0.02−0.5Hz,
in order to make evident the waveform of the explosions superposed
to background tremor.

remark we can say that ICA is a method to apply a priori as
a pre-analysis to scalar experimental series, namely it allows
to recognize if the scalar series contain one or more indepen-
dent signals.

4 Application of ICA to Strombolian events

We study the seismic signals recorded at Stromboli volcano.
This volcano is characterized by basaltic eruptions. In these
eruptions, the relative motion of gas with respect to the fluid
produces either an annular flow (Hawaian Fire Fountains)
or a Slug flow (Strombolian explosions). In fact, the typi-
cal seismic signature of Stromboli is the continuous volcanic
tremor (continuous vibration of the ground around the vol-
cano) due to degassing to which repeating explosion quakes
are superposed (see Fig.6).
Tremor and explosions have a very similar frequency con-
tent. In fact, both the behaviours are generated by complex
processes of magma flow and turbulent degassing.

Despite many studies (e.g. Chouet et al., 1997, 1999,
2003), the dynamics underlying the generation of these be-
haviours is not yet well understood.

In our studies, we have applied ICA to Strombolian events
considering both short-period (0.5 − 50Hz) and broadband
(0.02 − 50Hz) recorded seismograms. Strombolian signals,
due to their stationarity, are suitable to apply ICA. The aim
is to decompose, if it is possible, recorded series into statis-
tically independent components. In this way, we get infor-
mation about the ”modes” involved in the full dynamics and
constrain source geometry and mechanism. The analysis will
be carried on explosions and tremor, separately.
In order to avoid any delay among recording stations located
in different places, the seismic traces are aligned using the

Fig. 6. In the upper figure, 15 minutes of the vertical component
of broadband event is plotted (amplitudes in adimensional unit). It
was recorded at T1 station on 19 September at 22:00, during the ex-
periment performed in 1997, where 21 three-component broadband
seismometers were deployed on the flanks of the volcano, grouped
into three rings at different levels: Top, Middle, Bottom stations. In
the lower figure, the same event is filtered in the band 0.02−0.5 Hz,
in order to make evident the waveform of the explosions superposed
to background tremor.

systems, namely diffusion processes in the regime of stochas-
tic resonance.

Regarding the linear systems, we have obtained optimal
separation from very high superposed noise. Furthermore,
the ICA acts as Fast Fourier Transform but in time domain
since it gives us the normal modes of the system.

The performance of ICA is valuable also in the case of
nonlinear systems where we separate coupled Andronov os-
cillators, not trivial from the point of view of dynamical sy-
stems. Also in these experiments, the separation from noise
is well made. The experiments with stochastic resonance are
very impressive: the superposed periodic and stochastic sig-
nals are completely separated, i.e. ICA perfectly recognizes
the different superposed dynamical systems also when the
Fourier Transform is irresolute (insensitive). As a conclusive
remark, we can say that ICA is a method to apply “a pri-
ori” as a pre-analysis to scalar experimental series, namely it
allows to recognize if the scalar series contain one or more
independent signals.

4 Application of ICA to Strombolian events

We study the seismic signals recorded at Stromboli volcano.
This volcano is characterized by basaltic eruptions. In these
eruptions, the relative motion of gas with respect to the fluid
produces either an annular flow (Hawaian Fire Fountains)
or a Slug flow (Strombolian explosions). In fact, the typi-
cal seismic signature of Stromboli is the continuous volcanic
tremor (continuous vibration of the ground around the vol-
cano) due to degassing to which repeating explosion quakes
are superposed (see Fig.6).
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cross-correlation function. This satisfies the ICA request of
instantaneous mixing.

To get other information, we have also adopted differ-
ent techniques. They consist in techniques generally used
in nonlinear signal processing, and well-known or innova-
tive methods to investigate seismological signals. In partic-
ular, we have applied parametric and non parametric spec-
tral analysis; nonlinear denoising techniques (Kostelich and
Schreiber, 1993); particle motion and polarization filtering
(Kanasewich, 1981); methods to reconstruct phase space
starting from scalar time series (estimate of the dimension
(Grassberger and Procaccia, 1983), Average Mutual Infor-
mation (Fraser and Swinney, 1986), False Nearest Neighbors
(Kennel et al., 1992)); trajectory space analysis to estimate
the variety of dynamical systems presents in the data (Pal-
adin and Vulpiani, 1987).

As regards explosions at high frequency, we report the re-
sults obtained decomposing signals recorded by using short-
period seismometers (Chouet et al., 1998). ICA has been ap-
plied to explosions recorded by seismometers along the three
orthonormal directions of motion, i.e. radial, transverse, ver-
tical with respect to the crater area.

We display in Fig.7 the results of the radial direction; the
other directions show a similar behaviour (Acernese et al.,
2003). As one can see (Fig.7), the wavefield is the linear
superposition in time domain of three independent compo-
nents, characterized by well defined and separate frequency
bands (respectively 0.8− 1.2, 2.4− 3.0, 3.2− 4.5Hz).

The first two bands present wavefield mainly composed
of body waves with radial polarization, pointing towards the
crater area. In the last band, the very low SNR, together with
the corresponding short wavelengths, does not allow to indi-
viduate a defined direction (Acernese et al., 2004).

Similar results are achieved analysing broadband explo-
sions. In addition, in this case, we extract also a component
corresponding to the VLP signal (Falanga, 2003) as already
observed by Chouet et al. (2003).

The reconstruction of the phase space establishes that ex-
plosions are associated to a low-dimensional dynamical sys-
tem characterized by dimensions in the range [2 − 3] (De
Martino et al., 2002a).

Then, trajectory space analysis, performed on broadband
signals, states that explosions are generated by an unique dy-
namical system (De Martino et al., 2004), though Chouet
et al. (2003) have found two distinct kinds of explosions,
which have been associated to the two distinct vents at
Stromboli in 1997. The differences between the two types
of events are related more to slight variations in conduit ge-
ometries rather than differences in the dynamics generation
of the phenomena.

We have also analysed, as already said, the tremor. In this
case, it is convenient to consider separately two frequency
bands (> 0.5Hz and < 0.5Hz). Namely, the low frequency
band can contain waves travelling with different velocity
with respect to the high frequency wavefield. In Fig.8, as you
can see, tremor shows ICA extracted components similar to
explosion quakes, in waveform and frequency content. Of
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Fig. 7. Explosions in the band greater than 0.5Hz: Denoised inde-
pendent components of radial direction of motion and their spectra
(sampling frequency equal to 125Hz; amplitude in adimensional
unit.
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Fig. 8. Denoised independent components of tremor, by ICA, in the
range > 0.5Hz related to the vertical direction and their spectra;
amplitude in adimensional unit.

course, regarding tremor, the individuation of clear bands is
more difficult due to very low SNR. Polarization analysis on
tremor has already been performed on short-period recorded
signals Chouet et al. (1997). We are extending the analysis to
broadband signals as extracted by ICA. This will be matter
of a forthcoming paper.

All the results persuade us to think that, regarding high
frequency content, the superficial source is stationary and
not destructive. The wavefield is generated by the excita-
tion of only feww degrees of freedom of the complex fluid-
dynamical source system.

Possible models of the production of these oscillations
have been postulated by Julian (1994), Ida (1996) and James
et al. (2004). In particular, Julian (1994) suggested an or-
gan pipe model, with a constant rate supply of fluids inside a
cylinder conduit for a variety of almost periodic signals ob-
served on volcanoes.

The independent component analysis of organ pipe acous-
tic emission by Bottiglieri et al. (2004) seems to support this
model. Namely, in an organ pipe, a constant rate supply
of pressure produces self-sustained sounds and ICA is able

Fig. 7. Explosions in the band greater than 0.5 Hz: Denoised inde-
pendent components of radial direction of motion and their spectra
(sampling frequency equal to 125 Hz; amplitude in adimensional
unit).

Tremor and explosions have a very similar frequency con-
tent. In fact, both the behaviours are generated by complex
processes of magma flow and turbulent degassing.

Despite many studies (e.g.Chouet et al., 1997, 1999,
2003), the dynamics underlying the generation of these be-
haviours is not yet well understood.

In our studies, we have applied ICA to Strombolian events
considering both short-period (0.5−50 Hz) and broadband
(0.02−50 Hz) recorded seismograms. Strombolian signals,
due to their stationarity, are suitable to apply ICA. The aim
is to decompose, if it is possible, recorded series into stati-
stically independent components. In this way, we get infor-
mation about the “modes” involved in the full dynamics and
constrain source geometry and mechanism. The analysis will
be carried on explosions and tremor, separately.

In order to avoid any delay among recording stations lo-
cated in different places, the seismic traces are aligned using
the cross-correlation function. This satisfies the ICA request
of instantaneous mixing.

To get other information, we have also adopted different
techniques. They consist in techniques generally used in
nonlinear signal processing, and well-known or innovative
methods to investigate seismological signals. In particu-
lar, we have applied parametric and non parametric spec-
tral analysis; nonlinear denoising techniques (Kostelich and
Schreiber, 1993); particle motion and polarization filtering
(Kanasewich, 1981); methods to reconstruct phase space
starting from scalar time series (estimate of the dimension
(Grassberger and Procaccia, 1983), Average Mutual Infor-
mation (Fraser and Swinney, 1986), False Nearest Neighbors
(Kennel et al., 1992)); trajectory space analysis to estimate
the variety of dynamical systems presents in the data (Pal-
adin and Vulpiani, 1987).

As regards explosions at high frequency, we report the re-
sults obtained decomposing signals recorded by using short-
period seismometers (Chouet et al., 1998). ICA has been ap-
plied to explosions recorded by seismometers along the three
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cross-correlation function. This satisfies the ICA request of
instantaneous mixing.

To get other information, we have also adopted differ-
ent techniques. They consist in techniques generally used
in nonlinear signal processing, and well-known or innova-
tive methods to investigate seismological signals. In partic-
ular, we have applied parametric and non parametric spec-
tral analysis; nonlinear denoising techniques (Kostelich and
Schreiber, 1993); particle motion and polarization filtering
(Kanasewich, 1981); methods to reconstruct phase space
starting from scalar time series (estimate of the dimension
(Grassberger and Procaccia, 1983), Average Mutual Infor-
mation (Fraser and Swinney, 1986), False Nearest Neighbors
(Kennel et al., 1992)); trajectory space analysis to estimate
the variety of dynamical systems presents in the data (Pal-
adin and Vulpiani, 1987).

As regards explosions at high frequency, we report the re-
sults obtained decomposing signals recorded by using short-
period seismometers (Chouet et al., 1998). ICA has been ap-
plied to explosions recorded by seismometers along the three
orthonormal directions of motion, i.e. radial, transverse, ver-
tical with respect to the crater area.

We display in Fig.7 the results of the radial direction; the
other directions show a similar behaviour (Acernese et al.,
2003). As one can see (Fig.7), the wavefield is the linear
superposition in time domain of three independent compo-
nents, characterized by well defined and separate frequency
bands (respectively 0.8− 1.2, 2.4− 3.0, 3.2− 4.5Hz).

The first two bands present wavefield mainly composed
of body waves with radial polarization, pointing towards the
crater area. In the last band, the very low SNR, together with
the corresponding short wavelengths, does not allow to indi-
viduate a defined direction (Acernese et al., 2004).

Similar results are achieved analysing broadband explo-
sions. In addition, in this case, we extract also a component
corresponding to the VLP signal (Falanga, 2003) as already
observed by Chouet et al. (2003).

The reconstruction of the phase space establishes that ex-
plosions are associated to a low-dimensional dynamical sys-
tem characterized by dimensions in the range [2 − 3] (De
Martino et al., 2002a).

Then, trajectory space analysis, performed on broadband
signals, states that explosions are generated by an unique dy-
namical system (De Martino et al., 2004), though Chouet
et al. (2003) have found two distinct kinds of explosions,
which have been associated to the two distinct vents at
Stromboli in 1997. The differences between the two types
of events are related more to slight variations in conduit ge-
ometries rather than differences in the dynamics generation
of the phenomena.

We have also analysed, as already said, the tremor. In this
case, it is convenient to consider separately two frequency
bands (> 0.5Hz and < 0.5Hz). Namely, the low frequency
band can contain waves travelling with different velocity
with respect to the high frequency wavefield. In Fig.8, as you
can see, tremor shows ICA extracted components similar to
explosion quakes, in waveform and frequency content. Of
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course, regarding tremor, the individuation of clear bands is
more difficult due to very low SNR. Polarization analysis on
tremor has already been performed on short-period recorded
signals Chouet et al. (1997). We are extending the analysis to
broadband signals as extracted by ICA. This will be matter
of a forthcoming paper.

All the results persuade us to think that, regarding high
frequency content, the superficial source is stationary and
not destructive. The wavefield is generated by the excita-
tion of only feww degrees of freedom of the complex fluid-
dynamical source system.

Possible models of the production of these oscillations
have been postulated by Julian (1994), Ida (1996) and James
et al. (2004). In particular, Julian (1994) suggested an or-
gan pipe model, with a constant rate supply of fluids inside a
cylinder conduit for a variety of almost periodic signals ob-
served on volcanoes.

The independent component analysis of organ pipe acous-
tic emission by Bottiglieri et al. (2004) seems to support this
model. Namely, in an organ pipe, a constant rate supply
of pressure produces self-sustained sounds and ICA is able

Fig. 8. Denoised independent components of tremor, by ICA, in
the range>0.5 Hz related to the vertical direction and their spectra
(amplitude in adimensional unit).

orthonormal directions of motion, i.e. radial, transverse, ver-
tical with respect to the crater area.

We display in Fig.7 the results of the radial direction; the
other directions show a similar behaviour (Acernese et al.,
2003). As one can see (Fig.7), the wavefield is the linear
superposition in time domain of three independent compo-
nents, characterized by well defined and separate frequency
bands (respectively 0.8−1.2, 2.4−3.0, 3.2−4.5 Hz).

The first two bands present wavefield mainly composed
of body waves with radial polarization, pointing towards the
crater area. In the last band, the very low SNR, together with
the corresponding short wavelengths, does not allow to indi-
viduate a defined direction (Acernese et al., 2004).

Similar results are achieved analysing broadband explo-
sions. In addition, in this case, we extract also a component
corresponding to the VLP signal (Falanga, 2003) as already
observed byChouet et al.(2003).

The reconstruction of the phase space establishes that ex-
plosions are associated to a low-dimensional dynamical sy-
stem characterized by dimensions in the range[2−3] (De
Martino et al., 2002a).

Then, trajectory space analysis, performed on broadband
signals, states that explosions are generated by an unique dy-
namical system (De Martino et al., 2004), thoughChouet
et al. (2003) have found two distinct kinds of explosions,
which have been associated to the two distinct vents at
Stromboli in 1997. The differences between the two types
of events are related more to slight variations in conduit geo-
metries rather than differences in the dynamics generation of
the phenomena.

We have also analysed, as already said, the tremor. In this
case, it is convenient to consider separately two frequency
bands (> 0.5 Hz and< 0.5 Hz). Namely, the low frequency
band can contain waves travelling with different velocity
with respect to the high frequency wavefield. In Fig.8, as
you can see, tremor shows ICA extracted components similar
to explosion quakes, in waveform and frequency content. Of
course, regarding tremor, the individuation of clear bands is
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Fig. 9. Denoised independent components by ICA in the range
[0.02 − 0.5Hz] of vertical direction of motion and their spectra;
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to recognize exactly three independent components in limit
cycle regime, corresponding to a fundamental Landau mode
and two excited ones. In this case, due to the cylindrical sym-
metry of the pipe the waveforms are simpler than in Strom-
boli case.

In the scheme of organ pipe model for Stromboli volcano,
the tremor is the basic signal; explosions are generated by
an enhancing in amplitude of tremor. The enhancing may be
due to the formation of slug within the shallow plumbing sys-
tem. In order to get information about the generative process
of slugs, i.e. coalescence phenomenon, we focalise our atten-
tion on tremor at very low frequency band (0.02−0.5Hz). We
report in Fig.9 the extracted components by means of ICA re-
lated to windows containing obviously only tremor. As we
can see, three components in the band 30− 42s appear, with
a fundamental peak corresponding to a 30s periodicity (De
Martino et al., 2002b, 2003; Falanga, 2003).

Polarization analysis, performed on few tremor signals, fil-
tered in a very low frequency band (< 0.1Hz) in order to
investigate the nature of the 30− 40s extracted components,
shows, as a preliminary result, a wavefield polarized in trans-
verse direction with respect to crater area. Further investiga-
tion, that takes into account all the statistics, is under study.

Finally, we have estimated the apparent velocity of this
component. We obtain values of velocity very low of the
order of 100m/s. The latter suggests that we are dealing
with a subsonic slow wave originating in crater area.

Oscillations, in this low frequencies regime, have been ob-
served already on other volcanoes (e.g. Aster et al., 2003).
They have been associated to the formation of slug within the
magmatic system. So, they have been recognized as gravity
waves although the sizes of slug are not well estimated (e.g.
Aster et al., 2003).

5 Conclusions

We have applied ICA to Strombolian seismological signals as
an ”a priori” tool. Combining ICA with other methods, we

have obtained many constrains to model Strombolian activity
source. ICA gives five ”modes” directly in the time domain.
This means that, though in a suitable coupling limit, Strom-
boli recorded signals are the linear superposition of these five
modes (three at high frequency, VLP and 30 − 40s mode).
Then, the physical model must reproduce these ”modes”.

Our approach clarifies the situation of high frequencies
(> 0.5Hz) of Stromboli: in this range, we are in presence
of vibrations of volcanic conduits induced by permanent de-
gassing. We prove that tremor and explosions display not
only a similar frequency content, but also similar waveforms
in time domain. A pregnant difference is the amplitude en-
hancing.

Analogies with organ pipe model are possible once hav-
ing shown that strombolian high frequency wavefield can be
decomposed into three separate frequency bands. In fact the
degassing is almost stationary as the pumping in the organ
pipe, although the wavefield produced by the vibration of
conduit propagates in a more complex medium with respect
to the air (as in the case of acoustic field produced by or-
gan pipe). The waveforms are more complex, namely we are
dealing with a pipe (conduit) having a more complex geom-
etry than a cylindrical pipe. But, in both cases, we find three
self-sustained ”modes” produced by a dynamical system in
limit cycle regime.

The heart of sound production in organ pipe is the edge.
The same function for the generation of ground vibration (the
coupling between degassing and the conduit) can be ruled by
the variable geometry of the conduit (James et al., 2004).

The ICA has evidenced, also, component at 30s, that can
furnish the means by which the permanent tremor becomes
enhanced in the explosion.

We can consider a very simple model to clarify this point.
Take one dimensional limit cycle (Eq.7) with a threshold b
depending on time (see Fig.10). The threshold in the limit
cycle acts as a sort of potential ruling the contributes com-
ing from pumping and dissipation, such a way it represents
the stationary degassing and all the dissipative effects surely
present in a volcanic structure.

When the formation of slug occurs, there is a time varia-
tion of pumping so that the system goes in a excited level.
Due to the fact that time duration of slug formation is very
short, the system immediately decays towards the basic en-
ergetic state.

This very rough model is constructed to show a possible
mechanism of self-interaction to obtain the seismic record
associated to explosion, as enhancing of tremor.

Namely, the high frequency amplitude enhancing is the ef-
fect of the density time variation due to coalescence, i.e. to
the formation of slug.

Obviously, the simulation of tremor as a simple limit cycle
at the frequency of 1Hz and the simulation of low frequency
mode as harmonic oscillator with a period of 30s are very far
from the reality.

For example, we have not considered that many ”modes”
come within the real system, that there is a neglected intrin-
sic stochasticity. Moreover the threshold signal, which rep-

Fig. 9. Denoised independent components by ICA in the range
(0.02−0.5 Hz) of vertical direction of motion and their spectra (am-
plitude in adimensional unit).

more difficult due to very low SNR. Polarization analysis on
tremor has already been performed on short-period recorded
signals (Chouet et al., 1997). We are extending the analysis
to broadband signals as extracted by ICA. This will be matter
of a forthcoming paper.

All the results persuade us to think that, regarding high
frequency content, the superficial source is stationary and not
destructive. The wavefield is generated by the excitation of
only few degrees of freedom of the complex fluid-dynamical
source system.

Possible models of the production of these oscillations
have been postulated byJulian(1994), Ida (1996) andJames
et al. (2004). In particular,Julian (1994) suggested an or-
gan pipe model, with a constant rate supply of fluids inside a
cylinder conduit for a variety of almost periodic signals ob-
served on volcanoes.

The independent component analysis of organ pipe acou-
stic emission byBottiglieri et al. (2004) seems to support
this model. Namely, in an organ pipe, a constant rate sup-
ply of pressure produces self-sustained sounds and ICA is
able to recognize exactly three independent components in
limit cycle regime, corresponding to a fundamental Landau
mode and two excited ones. In this case, due to the cylindri-
cal symmetry of the pipe the waveforms are simpler than in
Stromboli case.

In the scheme of organ pipe model for Stromboli volcano,
the tremor is the basic signal; explosions are generated by an
enhancing in amplitude of tremor. The enhancing may be due
to the formation of slug within the shallow pumping system.
In order to get information about the generative process of
slugs, i.e. coalescence phenomenon, we focalise our attention
on tremor at very low frequency band (0.02−0.5 Hz). We
report in Fig.9 the extracted components by means of ICA
related to windows containing obviously only tremor. As we
can see, three components in the band 30−42 s appear, with
a fundamental peak corresponding to a 30 s periodicity (De
Martino et al., 2002b, 2003; Falanga, 2003).
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Fig. 10. Toy-model: time evolution of a limit cycle with time vari-
able threshold; in the same figure, time evolution of threshold is
also plotted (bold line describing a limit cycle).

resents in a rough way the low frequency mode, is by itself
nonlinear and stochastic. Finally, the recorded waveforms
are due to a complex geometry of conduit and the real sys-
tem is not at all one-dimensional. Nevertheless, we think that
this toy model could be a starting point that deserves further
studies to be implemented to become the physical model of
Stromboli in the regime of its standard activity.
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Fig. 10. Toy-model: time evolution of a limit cycle with time vari-
able threshold; in the same figure, time evolution of threshold is
also plotted (bold line describing a limit cycle).

Polarization analysis, performed on few tremor signals, fil-
tered in a very low frequency band (< 0.1 Hz) in order to
investigate the nature of the 30−40 s extracted components,
shows, as a preliminary result, a wavefield polarized in trans-
verse direction with respect to crater area. Further investiga-
tion, that takes into account all the statistics, is under study.

Finally, we have estimated the apparent velocity of this
component. We obtain values of velocity very low of the
order of 100 m/s. The latter suggests that we are dealing with
a subsonic slow wave originating in crater area.

Oscillations, in this low frequencies regime, have been ob-
served already on other volcanoes (e.g.Aster et al., 2003).
They have been associated to the formation of slug within the
magmatic system. So, they have been recognized as gravity
waves although the sizes of slug are not well estimated (e.g.
Aster et al., 2003).

5 Conclusions

We have applied ICA to Strombolian seismological signals as
an “a priori” tool. Combining ICA with other methods, we
have obtained many constrains to model Strombolian activity
source. ICA gives five “modes” directly in the time domain.
This means that, though in a suitable coupling limit, Strom-
boli recorded signals are the linear superposition of these five
modes (three at high frequency, VLP and 30−40 s mode).
Then, the physical model must reproduce these “modes”.

Our approach clarifies the situation of high frequencies
(>0.5 Hz) of Stromboli: in this range, we are in presence
of vibrations of volcanic conduit induced by permanent de-
gassing. We prove that tremor and explosions display not
only a similar frequency content, but also similar waveforms
in time domain. A pregnant difference is the amplitude en-
hancing.

Analogies with organ pipe model are possible once having
shown that strombolian high frequency wavefield can be de-
composed into three separated frequency bands. In fact the
degassing is almost stationary as the pumping in the organ
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pipe, although the wavefield produced by the vibration of
conduit propagates in a more complex medium with respect
to the air (as in the case of acoustic field produced by or-
gan pipe). The waveforms are more complex, namely we are
dealing with a pipe (conduit) having a more complex geo-
metry than a cylindrical pipe. But, in both cases, we find
three self-sustained “modes” produced by a dynamical sys-
tem in limit cycle regime.

The heart of sound production in organ pipe is the edge.
The same function for the generation of ground vibration (the
coupling between degassing and the conduit) can be ruled by
the variable geometry of the conduit (James et al., 2004).

The ICA has evidenced, also, component at 30 s, that can
furnish the means by which the permanent tremor becomes
enhanced in the explosion.

We can consider a very simple model to clarify this point.
Take one dimensional limit cycle (Eq.7) with a threshold
b depending on time (see Fig.10). The threshold in the
limit cycle acts as a sort of potential ruling the contributes
coming from pumping and dissipation, such a way it repre-
sents the stationary degassing and all the dissipative effects
surely present in a volcanic structure. When the formation of
slug occurs, there is a time variation of pumping so that the
system goes in a excited level. Due to the fact that time dura-
tion of slug formation is very short, the system immediately
decays towards the basic energetic state.

This very rough model is constructed to show a possible
mechanism of self-interaction to obtain the seismic record
associated to explosion, as enhancing of tremor. Namely, the
high frequency amplitude enhancing is the effect of the den-
sity time variation due to coalescence, i.e. to the formation of
slug.

Obviously, the simulation of tremor as a simple limit cycle
at the frequency of 1 Hz and the simulation of low frequency
mode as harmonic oscillator with a period of 30 s are very far
from the reality.

For example, we have not considered that many “modes”
come within the real system, that there is a neglected
intrinsic stochasticity. Moreover the threshold signal, which
represents in a rough way the low frequency mode, is
by itself nonlinear and stochastic. Finally, the recorded
waveforms are due to a complex geometry of conduit and
the real system is not at all one-dimensional. Nevertheless,
we think that this toy model could be a starting point that
deserves further studies to be implemented to become the
physical model of Stromboli in the regime of its standard
activity.
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