19 research outputs found

    Targeted gene panel screening is an effective tool to identify undiagnosed late onset Pompe disease

    Get PDF
    Mutations in the GAA gene may cause a late onset Pompe disease presenting with proximal weakness without the characteristic muscle pathology, and therefore a test for GAA activity is the first tier analysis in all undiagnosed patients with hyperCKemia and/or limb-girdle muscular weakness. By using MotorPlex, a targeted gene panel for next generation sequencing, we analyzed GAA and other muscle diseasegenes in a large cohort of undiagnosed patients with suspected inherited skeletal muscle disorders (n = 504). In this cohort, 275 patients presented with limb-girdle phenotype and/or an isolated hyperCKemia. Mutational analysis identified GAA mutations in ten patients. Further seven affected relatives were identified by segregation studies. All the patients carried the common GAA mutation c.-32-13T > G and a second, previously reported mutation. In the subcohort of 275 patients with proximal muscle weakness and/or hyperCKemia, we identified late-onset Pompe disease in 10 patients. The clinical overlap between Pompe disease and LGMDs or other skeletal muscle disorders suggests that GAA and the genes causing a metabolic myopathy should be analyzed in all the gene panels used for testing neuromuscular patients. However, enzymatic tests are essential for the interpretation and validation of genetic results. (C) 2018 Elsevier B.V. All rights reserved.Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Next-Generation Sequencing Approaches to Define the Role of the Autophagy Lysosomal Pathway in Human Disease: The Example of LysoPlex

    No full text
    Next-Generation Sequencing (NGS) technologies have deeply changed the throughput of genetic testing allowing analyzing millions of DNA fragments in parallel. One key application is the understanding of genetically heterogeneous and complex diseases where 50-100 different genes may converge to control the same pathways. These disorders cannot be studied using traditional approaches, based on gene-by-gene Sanger sequencing. We have set up an NGS protocol based on a specific selection of DNA regions belonging to about 900 genes of the autophagy-lysosomal (ALP) pathway. We here specify all the technical steps and challenges of our protocol, named LysoPlex. This is based on the Haloplex technology and together with high-coverage sequencing empowers a high and uniform coverage of ALP genes. LysoPlex outplays other NGS applications in sensitivity and specificity, providing an accurate picture of all variations in ALP genes

    [Next Generation Sequencing and ADPKD]

    No full text
    Autosomal Dominant Polycistic Kidney Disease (ADPKD) is the most common inherited genetic disorder in the word, caused by mutations in PKD1 gene in 85% of cases and PKD 2 gene in the remaining 15%. Although diagnosis is usually based on ultrasound, MRI and CT scans, in some cases genetic testing is necessary, for example, in patients with atypical phenotype or with a negative family history, or in cases of donation from relatives. The presence of pseudogenes in PKD1, the size of the gene, the costs of the Sanger sequencing and genetic heterogeneity underlying kidney disease make genetic analysis particularly difficult to be performed. Next Generation Sequencing (NGS) represents the last frontier of innovation among diagnostic tools for molecular diagnosis of inherited cystic kidney disease thanks to the ability to analyze several genes at the same time. In this regard, we have developed a NGS platform, called Nephroplex, with the aim of identifying variations in 115 genes responsible for numerous kidney diseases, including cystic and polycystic disease, achieving, overall, a target region of 338.8 kbps. The technology used for the enrichment is HaloPlex system, based on the digestion of genomic DNA with restriction enzymes and the capture of the regions of interest with specific hybridization probes. With our platform, we have analyzed 9 patients with clinical diagnosis of ADPKD. We have obtained a depth coverage of 100x for 96.5% of the target, while the region not covered accounted for only 3% of the region of interest. In 6 patients, we found causative mutations in the genes PKD1 and PKD2, achieving a detection rate of 66%. In conclusion, the NephroPlex platform has proved to be an excellent device for molecular diagnosis of kidney disease and could clarify the mechanisms underlying genetic heterogeneity observed in kidney disease

    Next generation sequencing on patients with LGMD and nonspecific myopathies: findings associated with ANO5 mutations

    Get PDF
    We studied 786 undiagnosed patients with LGMD or nonspecific myopathic features to investigate the role of ANO5 mutations in limb-girdle muscular dystrophies (LGMDs) and in nonspecific myopathies using the next generation sequencing (NGS) approach. In 160 LGMD patients, we first sequenced hotspot exons 5 and 20 and then sequenced the remaining part of the coding region. Another 626 patients, recruited using broader inclusion criteria, were directly analyzed by targeted NGS. By combining NGS and Sanger sequencing, we identified 33/786 (4%) patients carrying putative pathogenic changes in both alleles and 23 ANO5 heterozygotes (3%). The phenotypic spectrum is broader than expected, from hyperCKemia to myopathies, with lack of genotype/phenotype correlations. In particular, this is currently the largest screening of the ANO5 gene. The large number of heterozygotes for damaging mutations suggests that anoctaminopathies should be frequent and often nonpenetrant. We propose the multiple genetic testing by targeted NGS as a first step to analyze patients with nonspecific myopathic presentations. This represents a straightforward approach to overcome the difficulties of clinical heterogeneity of ANO5 patients, and to test, at the same time, many other genes involved in neuromuscular disorders

    Clinical and Genetic Evaluation of a Cohort of Pediatric Patients with Severe Inherited Retinal Dystrophies

    No full text
    We performed a clinical and genetic characterization of a pediatric cohort of patients with inherited retinal dystrophy (IRD) to identify the most suitable cases for gene therapy. The cohort comprised 43 patients, aged between 2 and 18 years, with severe isolated IRD at the time of presentation. The ophthalmological characterization also included assessment of the photoreceptor layer integrity in the macular region (ellipsoid zone (EZ) band). In parallel, we carried out a targeted, next-generation sequencing (NGS)-based analysis using a panel that covers over 150 genes with either an established or a candidate role in IRD pathogenesis. Based on the ophthalmological assessment, the cohort was composed of 24 Leber congenital amaurosis, 14 early onset retinitis pigmentosa, and 5 achromatopsia patients. We identified causative mutations in 58.1% of the cases. We also found novel genotype-phenotype correlations in patients harboring mutations in the CEP290 and CNGB3 genes. The EZ band was detectable in 40%of the analyzed cases, also in patients with genotypes usually associated with severe clinical manifestations. This study provides the first detailed clinical-genetic assessment of severe IRDs with infantile onset and lays the foundation of a standardized protocol for the selection of patients that are more likely to benefit from gene replacement therapeutic approaches.We performed a clinical and genetic characterization of a pediatric cohort of patients with inherited retinal dystrophy (IRD) to identify the most suitable cases for gene therapy. The cohort comprised 43 patients, aged between 2 and 18 years, with severe isolated IRD at the time of presentation. The ophthalmological characterization also included assessment of the photoreceptor layer integrity in the macular region (ellipsoid zone (EZ) band). In parallel, we carried out a targeted, next-generation sequencing (NGS)-based analysis using a panel that covers over 150 genes with either an established or a candidate role in IRD pathogenesis. Based on the ophthalmological assessment, the cohort was composed of 24 Leber congenital amaurosis, 14 early onset retinitis pigmentosa, and 5 achromatopsia patients. We identified causative mutations in 58.1% of the cases. We also found novel genotype-phenotype correlations in patients harboring mutations in the CEP290 and CNGB3 genes. The EZ band was detectable in 40% of the analyzed cases, also in patients with genotypes usually associated with severe clinical manifestations. This study provides the first detailed clinical-genetic assessment of severe IRDs with infantile onset and lays the foundation of a standardized protocol for the selection of patients that are more likely to benefit from gene replacement therapeutic approaches

    Familial Exudative Vitreoretinopathy caused by a Homozygous Mutation inTSPAN12in a Cystic Fibrosis Infant

    No full text
    Familial exudative vitreoretinopathy (FEVR) is a genetic disease affecting the vascularization of the peripheral retina. The clinical manifestations are very heterogeneous, ranging from mildly affected patients, who could present no visual defects, to severe conditions which can also cause complete blindness at birth or in the first decade. FEVR can be inherited in all the three genetic forms: dominant, recessive and X-linked. To date, four genes have been associated with the condition: TSPAN12. NDP. FDZ4 and LRP5. Interestingly, mutations in TSPAN12 have been considered causative of both a dominant and recessive inheritance and a FEVR phenotype sensitive to the number of TSPAN12 mutations has been supposed. Here we describe a case of a female infant affected by cystic fibrosis and by a severe form of exudative vitreoretinopathy. In particular, we have detected the homozygous missense mutation c.668 T > C in TSPAN12. Neither of the heterozygous parents has ocular manifestations of the disease, suggesting a classic recessive mendelian pattern of inheritance

    Mutations in the PCYT1A gene are responsible for isolated forms of retinal dystrophy

    No full text
    Mutations in the PCYT1A gene have been recently linked to two different phenotypes: one characterized by spondylometaphyseal dysplasia and cone-rod dystrophy (SMD-CRD) and the other by congenital lipodystrophy, severe fatty liver disease, and reduced HDL cholesterol without any retinal or skeletal involvement. Here, we identified, by next generation sequencing, sequence variants affecting function in the PCYT1A gene in three young patients with isolated retinal dystrophy from two different Italian families. A thorough clinical evaluation of the patients, with whole skeleton X-ray, metabolic assessment and liver ultrasound failed to reveal signs of skeletal dysplasia, metabolic and hepatic alterations. This is the first report showing that the PCYT1A gene can be responsible for isolated forms of retinal dystrophy, particularly without any skeletal involvement, thus further expanding the phenotypic spectrum induced by mutations in this gene.Mutations in the PCYT1A gene have been recently linked to two different phenotypes: one characterized by spondylometaphyseal dysplasia and cone-rod dystrophy (SMD-CRD) and the other by congenital lipodystrophy, severe fatty liver disease, and reduced HDL cholesterol without any retinal or skeletal involvement. Here, we identified, by next generation sequencing, sequence variants affecting function in the PCYT1A gene in three young patients with isolated retinal dystrophy from two different Italian families. A thorough clinical evaluation of the patients, with whole skeleton X-ray, metabolic assessment and liver ultrasound failed to reveal signs of skeletal dysplasia, metabolic and hepatic alterations. This is the first report showing that the PCYT1A gene can be responsible for isolated forms of retinal dystrophy, particularly without any skeletal involvement, thus further expanding the phenotypic spectrum induced by mutations in this gene.European Journal of Human Genetics advance online publication, 8 March 2017; doi:10.1038/ejhg.2017.23
    corecore