2,409 research outputs found

    Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations

    Full text link
    Ongoing millimeter VLBI observations with the Event Horizon Telescope allow unprecedented study of the innermost portion of black hole accretion flows. Interpreting the observations requires relativistic, time-dependent physical modeling. We discuss the comparison of radiative transfer calculations from general relativistic MHD simulations of Sagittarius A* and M87 with current and future mm-VLBI observations. This comparison allows estimates of the viewing geometry and physical conditions of the Sgr A* accretion flow. The viewing geometry for M87 is already constrained from observations of its large-scale jet, but, unlike Sgr A*, there is no consensus for its millimeter emission geometry or electron population. Despite this uncertainty, as long as the emission region is compact, robust predictions for the size of its jet launching region can be made. For both sources, the black hole shadow may be detected with future observations including ALMA and/or the LMT, which would constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The Central Kiloparse

    A framework to study and predict functional trait syndromes using phylogenetic and environmental data

    Get PDF
    Traits do not evolve in isolation but often as part of integrated trait syndromes, yet the relative contributions of environmental effects and evolutionary history on traits and their correlations are not easily resolved.In the present study, we develop a methodological framework to elucidate eco-evolutionary patterns in functional trait syndromes. We do so by separating the amount of variance and covariance related to phylogenetic heritage and environmental variables (environmental phylogenetic conservatism), only phylogenetic heritage (non-attributed phylogenetic conservatism) and only to environmental variables (evolutionarily labile environmental effects). Variance–covariance structures of trait syndromes are displayed as networks. We then use this framework to guide a newly derived imputation method based on machine learning models that predict trait values for unsampled taxa, considering environmental and phylogenetic information as well as trait covariation. TrEvol is presented as an R package providing a unified set of methodologies to study and predict multivariate trait patterns and improve our capacity to impute trait values.To illustrate its use, we leverage both simulated data and species-level traits related to hydraulics and the leaf economics spectrum, in relation to an aridity index, demonstrating that most trait correlations can be attributed to environmental phylogenetic conservatism.This conceptual framework can be employed to examine issues ranging from the evolution of trait adaptation at different phylogenetic depths to intraspecific trait variation

    Numerical Modeling of Multi-wavelength Spectra of M87 Core Emission

    Full text link
    Spectral fits to M87 core data from radio to hard x-ray are generated via a specially selected software suite, comprised of the HARM GRMHD accretion disk model and a 2D Monte Carlo radiation transport code. By determining appropriate parameter changes necessary to fit x-ray quiescent and flaring behavior of M87's core, we assess the reasonableness of various flaring mechanisms. This shows that an accretion disk model of M87's core out to 28 GM/c^2 can describe the inner emissions. High spin rates show GRMHD-driven polar outflow generation, without citing an external jet model. Our results favor accretion rate changes as the dominant mechanism of x-ray flux and index changes, with variations in density of approximately 20% necessary to scale between the average x-ray spectrum and flaring or quiescent spectra. The best fit parameters are black hole spin a/M > 0.8 and maximum accretion flow density n <= 3x10^7 cm^-3, equivalent to horizon accretion rates between m_dot = M_dot/M_dot_Edd ~ 2x10^-6 and 1x10^-5 (with M_dot_Edd defined assuming a radiative efficiency eta = 0.1). These results demonstrate that the immediate surroundings of M87's core are appropriate to explain observed x-ray variability.Comment: Accepted for publication in the Astrophysical Journa

    Bypass of mutagenic O 6 -Carboxymethylguanine DNA Adducts by Human Y- and B-Family Polymerases

    Get PDF
    The generation of chemical alkylating agents from nitrosation of glycine and bile acid conjugates in the gastrointestinal tract is hypothesized to initiate carcinogenesis. O6-carboxymethylguanine (O6-CMG) is a product of DNA alkylation derived from nitrosated glycine. Although the tendency of the structurally related adduct O6-methylguanine to code for the misincoporation of TTP during DNA replication is well-established, the impact of the presence of the O6-CMG adduct in a DNA template on the efficiency and fidelity of translesion DNA synthesis (TLS) by human DNA polymerases (Pols) has hitherto not been described. Herein, we characterize the ability of the four human TLS Pols η, ι, κ, and ζ and the replicative Pol δ to bypass O6-CMG in a prevalent mutational hot-spot for colon cancer. The results indicate that Pol η replicates past O6-CMG, incorporating dCMP or dAMP, whereas Pol κ incorporates dCMP only, and Pol ι incorporates primarily dTMP. Additionally, the subsequent extension step was carried out with high efficiency by TLS Pols η, κ, and ζ, while Pol ι was unable to extend from a terminal mismatch. These results provide a first basis of O6-CMG-promoted base misincorporation by Y- and B-family polymerases potentially leading to mutational signatures associated with colon cancer

    Reduction Of Spin Injection Efficiency by Interface Spin Scattering

    Full text link
    We report the first experimental demonstration that interface microstructure limits diffusive electrical spin injection efficiency across heteroepitaxial interfaces. A theoretical treatment shows that the suppression of spin injection due to interface defects follows directly from the contribution of the defect potential to the spin-orbit interaction, resulting in enhanced spin-flip scattering. An inverse correlation between spin-polarized electron injection efficiency and interface defect density is demonstrated for ZnMnSe/AlGaAs-GaAs spin-LEDs with spin injection efficiencies of 0 to 85%.Comment: 13 pages, 5 figures; submitted to PR

    A study of ovarian cancer patients treated with dose-intensive chemotherapy supported with peripheral blood progenitor cells mobilised by filgrastim and cyclophosphamide.

    Get PDF
    We have shown that large numbers of haemopoietic progenitor cells are mobilised into the blood after filgrastim [granulocyte colony-stimulating factor (G-CSF)] alone and filgrastim following cyclophosphamide chemotherapy in previously untreated patients with ovarian cancer. These cells may be used to provide safe and effective haemopoietic rescue following dose-intensive chemotherapy. Using filgrastim alone (10 micrograms kg-1), the apheresis harvest contained a median CFU-GM count of 45 x 10(4) kg-1 and 2 x 10(6) kg-1 CD34+ cells. Treatment with filgrastim (5 micrograms kg-1) following cyclophosphamide (3 g m-2) resulted in a harvest containing 66 x 10(4) kg-1 CFU-GM and 2.4 x 10(6) kg-1 CD34+ cells. There was no statistically significant difference between these two mobilising regimens. We have also demonstrated that dose-intensive carboplatin and cyclophosphamide chemotherapy can be delivered safely to patients with ovarian cancer when supported by peripheral blood progenitor cells and filgrastim. Carboplatin (AUC 7.5) and cyclophosphamide (900 mg m-2) given at 3 weekly intervals with progenitor cell and growth factor support was well tolerated in terms of haematological and systemic side-effects. Double the dose intensity of chemotherapy was delivered compared with our standard dose regimen when the treatment was given at 3 weekly intervals. Median dose intensity could be further escalated to 2.33 compared with our standard regimen by decreasing the interval between treatment cycles to 2 weeks. However, at this dose intensity less than a third of patients received their planned treatment on time. All the delays were due to thrombocytopenia

    Superresolution Full-polarimetric Imaging for Radio Interferometry with Sparse Modeling

    Get PDF
    We propose a new technique for radio interferometry to obtain superresolution full-polarization images in all four Stokes parameters using sparse modeling. The proposed technique reconstructs the image in each Stokes parameter from the corresponding full-complex Stokes visibilities by utilizing two regularization functions: the ℓ 1 norm and the total variation (TV) of the brightness distribution. As an application of this technique, we present simulated linear polarization observations of two physically motivated models of M87 with the Event Horizon Telescope. We confirm that ℓ 1+TV regularization can achieve an optimal resolution of ~25%–30% of the diffraction limit λ/D[subscript max], which is the nominal spatial resolution of a radio interferometer for both the total intensity (i.e., Stokes I) and linear polarizations (i.e., Stokes Q and U). This optimal resolution is better than that obtained from the widely used Cotton–Schwab CLEAN algorithm or from using ℓ 1 or TV regularizations alone. Furthermore, we find that ℓ 1+TV regularization can achieve much better image fidelity in linear polarization than other techniques over a wide range of spatial scales, not only in the superresolution regime, but also on scales larger than the diffraction limit. Our results clearly demonstrate that sparse reconstruction is a useful choice for high-fidelity full-polarimetric interferometric imaging

    First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e

    Get PDF
    To date, infrared interferometry at best achieved contrast ratios of a few times 10410^{-4} on bright targets. GRAVITY, with its dual-field mode, is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR8799, a young planetary system composed of four known giant exoplanets. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR8799e planet situated at 390 mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet relative to the star with a precision on the order of 100μ\,\muas. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a signal-to-noise ratio of 5\approx 5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a temperature of 1150±501150\pm50\,K and a surface gravity of 104.3±0.310^{4.3\pm0.3}\,cm/s2^{2}. This corresponds to a radius of 1.170.11+0.13RJup1.17^{+0.13}_{-0.11}\,R_{\rm Jup} and a mass of 104+7MJup10^{+7}_{-4}\,M_{\rm Jup}, which is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct detection and spectroscopic study of exoplanets at close angular separations from their stars.Comment: published in A&
    corecore