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Abstract

We propose a new technique for radio interferometry to obtain superresolution full-polarization images in all four Stokes
parameters using sparse modeling. The proposed technique reconstructs the image in each Stokes parameter from the
corresponding full-complex Stokes visibilities by utilizing two regularization functions: the ℓ1 norm and the total
variation (TV) of the brightness distribution. As an application of this technique, we present simulated linear polarization
observations of two physically motivated models of M87 with the Event Horizon Telescope. We confirm that ℓ1+TV
regularization can achieve an optimal resolution of ∼25%–30% of the diffraction limit Dmaxl , which is the nominal
spatial resolution of a radio interferometer for both the total intensity (i.e., Stokes I) and linear polarizations (i.e., Stokes
Q and U). This optimal resolution is better than that obtained from the widely used Cotton–Schwab CLEAN algorithm
or from using ℓ1 or TV regularizations alone. Furthermore, we find that ℓ1+TV regularization can achieve much better
image fidelity in linear polarization than other techniques over a wide range of spatial scales, not only in the
superresolution regime, but also on scales larger than the diffraction limit. Our results clearly demonstrate that sparse
reconstruction is a useful choice for high-fidelity full-polarimetric interferometric imaging.

Key words: polarization – techniques: high angular resolution – techniques: image processing – techniques:
interferometric – techniques: polarimetric

1. Introduction

Polarization is a unique tracer of the magnetic field and
magnetized plasma distribution in the universe. The distribution
of magnetic field lines can be inferred from linear polarization in
a variety of sources, including synchrotron emission from
nonthermal or relativistic thermal electrons in high-energy
objects (e.g., Pacholczyk 1970), maser emission from star-
forming regions or evolved stars (e.g., Fish & Reid 2006), and
thermal emission partially absorbed by aligned dust grains (e.g.,
Girart et al. 2006, 2009). Polarized emission also contains
information about the magnetized plasma along the line of sight
(e.g., Faraday Tomography; Burn 1966; Brentjens & de
Bruyn 2005) via Faraday rotation of linear polarization or
Faraday conversion from linear to circular polarization (Legg &
Westfold 1968; Pacholczyk 1970; Jones & Odell 1977). Recent
theoretical and observational studies suggest that linear polariza-
tion can be a unique tracer of the dust evolution in
protoplanetary disks (Kataoka et al. 2015, 2016).

High-resolution imaging of polarized emission is therefore a
fundamental part of the modern observational tool kit in

astronomy. The angular resolution of a telescope (often referred
to as “beam size” in radio astronomy and “diffraction limit” in
optical astronomy) is given by Dq l» , where λ and D are the
observing wavelength and the diameter of the telescope,
respectively. At radio wavelengths, interferometry is the most
effective approach to obtaining high angular resolution. The
nominal resolution of an interferometer is given by Dmaxq l» ,
where Dmax is the maximum length of the baseline between two
telescopes, projected in the plane normal to the direction of
observation. Of all observational techniques across the electro-
magnetic spectrum, radio interferometry provides the imaging
capability at the finest angular resolution (e.g., Thompson
et al. 2001). In particular, very long baseline interferometry
(VLBI), which utilizes intercontinental baselines (or even base-
lines to space), has achieved the highest angular resolution in the
history of astronomy.
The Event Horizon Telescope (EHT; Doeleman et al. 2009a)

is a ground-based VLBI array with an angular resolution of a
few tens of microarcseconds at short/submillimeter wave-
lengths (λ1.3 mm, ν230 GHz; e.g., Doeleman et al.
2008, 2012; Fish et al. 2011, 2016; Lu et al. 2012, 2013;
Akiyama et al. 2015; Johnson et al. 2015). The EHT resolves
compact structures of a few Schwarzschild radii (Rs) in the
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vicinity of the supermassive black holes in the Galactic center
source Sgr A* (Doeleman et al. 2008; Fish et al. 2011, 2016;
Johnson et al. 2015) and the nucleus of M87 (Doeleman et al.
2012; Akiyama et al. 2015). Direct imaging of these scales will
be accessible in the next few years with technical developments
and the addition of new (sub)millimeter telescopes such as the
Atacama Large Submillimeter/millimeter Array (ALMA) to
the EHT (e.g., Fish et al. 2013). Polarimetric imaging with the
EHT will be especially transformational, opening a new field to
study the properties of the magnetic field distribution and
magnetized plasma in the regions of strong gravitation. Indeed,
early EHT observations of Sgr A* resolve ordered and time-
variable magnetic fields on Rs scales (Johnson et al. 2015).
High-fidelity images of the linearly polarized emission will be
crucial for understanding processes of black hole accretion and
jet formation.

The imaging problem of interferometry is formulated as an
underdetermined linear problem (see Section 2.1) of recon-
structing an image from complex visibilities that represent
Fourier components of the source image. The CLEAN
algorithm (Högbom 1974) and its variants (e.g., Clark 1980;
Schwab 1984) have been the most successful and widely used
algorithms in radio interferometry. CLEAN was independently
rediscovered as the Matching Pursuit algorithm (MP; Mallat &
Zhang 1993) and has been widely used in many other fields to
derive a sparse solution x of an underdetermined linear
problem y Ax= , where y and A are observational data and
the observation matrix, respectively. For real data with noise,
this can be mathematically described by

y A xx Tmin subject to , 1
x

2
2
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for p 0> , and defined as the number of nonzero components
for p=0. The term to be minimized is the traditional 2c term,
and T is a threshold for the ℓ0 norm representing the sparsity of
the solution. Thus, the solution is equivalent to minimizing the

2c term within a given sparsity. A direct approach to solving
this equation is to try all possible combinations of zero
components of x one-by-one. However, the computational cost
of this exhaustive search is so large that it is intractable for
large dimensional x. CLEAN, MP, and their variants select a
nonzero element one-by-one and incrementally in a greedy
manner in order to solve this problem efficiently.

A popular relaxation of sparse reconstruction comes from
replacing the ℓ0 norm with the ℓ1 norm as

y A xx Tmin subject to , 3
x

2
2

1 -∣∣ ∣∣ ∣∣ ∣∣ ( )

which is known as LASSO (least absolute shrinkage and
selection operator; Tibshirani 1996). This is a convex relaxation
of Equation (1) and can be transformed into the Lagrange form:

y Ax xmin . 4
x

ℓ2
2

1- + L(∣∣ ∣∣ ∣∣ ∣∣ ) ( )

Many efficient algorithms have been proposed to solve LASSO
(e.g., the fast iterative shrinkage-thresholding algorithm (FISTA);
Beck & Teboulle 2009b). This method has become popular in

many fields such as medical imaging, particularly after the
appearance of compressed sensing (also known as compressive
sensing; Donoho 2006; Candes & Tao 2006) techniques, which
have shown that LASSO can solve many ill-posed linear
problems accurately if the solution vector is sparse—the number
of elements with nonzero value is very small compared to its
dimension. We have applied LASSO to Stokes I imaging with
radio interferometry (Honma et al. 2014; Akiyama et al. 2016;
Ikeda et al. 2016) and found that LASSO can potentially
reconstruct structure on scales ∼4 times finer than Dmaxl
(Honma et al. 2014). Techniques of compressed sensing are
beginning to be used in other fields of radio interferometry15 after
pioneering work by Wiaux et al. (2009a) and Wiaux et al. (2009b)
(see Garsden et al. 2015, and references therein).
A critical assumption in techniques with ℓ1 regularization is

that the solution (i.e., the true image) is sparse. If the number of
pixels with nonzero brightness is not small compared to the
number of data points, simple ℓ1-norm regularization may
reconstruct an image that is too sparse. This situation can arise
when reconstructing an extended source or even for a compact
source if the imaging pixel size is set to be much smaller than
the size of the emission structure. A promising approach to
overcoming this issue is to change the basis of the image to a
more sparse one. Pioneering work in this area has made use of
transforms to wavelet or curvelet bases, in which the image can
be represented sparsely (e.g., Li et al. 2011; Carrillo et al. 2014;
Dabbech et al. 2015; Garsden et al. 2015). We have taken
another approach by adding total variation (TV) regularization
(e.g., Wiaux et al. 2010; McEwen & Wiaux 2011; Uemura
et al. 2015; Chael et al. 2016), which produces an image that is
sparse in its gradient domain. TV regularization has been
shown to be effective for imaging with visibility amplitudes
and closure phases (e.g., Akiyama et al. 2016) in the
superresolution regime finer than the diffraction limit.
In interferometric imaging, another class of widely used

imaging techniques is the maximum entropy methods (MEM),
utilizing different functions (named as “entropy terms”) to
regularize images (see Narayan & Nityananda 1986, for a
review). Image reconstruction with MEM has been practically
extended to polarimetry (Holdaway & Wardle 1990; Sault
et al. 1999; and see Chael et al. 2016 and Coughlan &
Gabuzda 2016 for a review of polarimetric MEM techniques).
Sparse modeling techniques utilizing ℓ1 and TV terms have

heretofore been applied only to Stokes I image reconstruction. In
this paper, we extend the framework of sparse imaging techniques
for radio interferometry with ℓ1 and TV regularizations to full-
polarization imaging for the first time. As an example, we apply
our new technique to simulated EHT data of the accretion and jet-
launching region immediately around the black hole of M87.

2. The Proposed Method

2.1. Polarimetric Imaging with Radio Interferometry

The intensity distribution of the emission from the sky can be
described with four Stokes parameters, I, Q, U, and V, which are
all real. Stokes I represents the total intensity of the emission,
which is generally nonnegative for astronomical images. On the
other hand, Q and U, which represent linear polarization, and V,

15 A list of papers are available in https://ui.adsabs.harvard.edu/#/public-
libraries/wmxthNHHQrGDS2aKt3gXow
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which represents circular polarization, can take on negative
values. Stokes Q and U are often combined into the complex
quantity P Q iUº + , where P∣ ∣ and Parg 2c = ( ) are the
linear polarization intensity and the electric vector polarization
angle (EVPA), respectively.

A radio interferometer samples Fourier components of each
Stokes parameter, known as the Stokes visibilities Ĩ , Q̃, Ũ , and
Ṽ , defined by

S u v dxdy S x y i ux vy, , exp 2 , 5ò p= - +˜( ) ( ) ( ( )) ( )

where S and S̃ represent a Stokes parameter and the
corresponding Stokes visibility (i.e., S I Q U V, , ,= ). Here,
the spatial frequency (u, v) corresponds to the baseline vector
(in units of the observing wavelength λ) between two antennas
(or receivers) projected onto the tangent plane of the celestial
sphere at the phase-tracking center.

Observed visibilities are discrete quantities, and the sky image
can be approximated by a pixelated version where the pixel size
is much smaller than the nominal resolution of the interferom-
eter. The Stokes parameters can therefore be represented as
discrete vectors I, Q, U , and V , related to the observed Stokes
visibilities Ĩ , Q̃, Ũ , and Ṽ by a discrete Fourier transform F:

S FS S I Q U Vfor , , , . 6= =˜ ( ) ( )

The sampling of Stokes visibilities is almost always incomplete.
Since the number of visibility samples S̃ is smaller than the
number of pixels in the image, solving the above equation for the
image S is an ill-posed problem. One or more regularizers must
therefore be added to find a unique solution to Equation (6).

2.2. The Proposed Methods

A natural extension of our previous work (Honma et al. 2014;
Akiyama et al. 2016; Ikeda et al. 2016) to full-polarimetric
imaging is given by

S S FS S Sargmin 7S ℓ t2
2

1 tv= - + L + L(∣∣ ˜ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ) ( )

for each Stokes parameter (i.e., S I Q U V, , ,= ) and
corresponding Stokes visibility (i.e., S I Q U V, , ,=˜ ˜ ˜ ˜ ˜ ). This
equation consists of the traditional 2c term, which represents
deviations between the model image and the observed
visibilities, and two terms consisting of a regularizer and a
regularization parameter.

One of the additional terms is ℓ1 regularization (e.g., Honma
et al. 2014). Here, ℓL is its regularization parameter, adjusting the
degree of sparsity by changing the weight of the ℓ1-norm penalty.
In general, a large ℓL prefers a solution with very few nonzero
components, while a small ℓL imposes less sparsity. In this paper,
we use the normalized regularization parameter ℓL̃ defined by

I Nmax , 8ℓ ℓ
i

iL º L˜ ∣ ˜∣ ( )/

which is less affected by the number of visibilities N and the
total flux density of the target source, which should be close to
the maximum value of the visibility amplitudes at Stokes I
(i.e., Imaxi i∣ ˜∣), following Akiyama et al. (2016).

The other additional term is TV regularization with a
regularization parameter tL . A large tL leads to a sparse solution
in the gradient domain—a piecewise smooth solution. In this
paper, we adopt the isotropic TV expression (Rudin et al. 1992), a

typical form for two-dimensional images, defined by

x x x x x . 9
i j

i j i j i j i jtv 1, ,
2

, 1 ,
2åå= - + -+ +∣∣ ∣∣ ∣ ∣ ∣ ∣ ( )

We have examined the effects of TV regularization on
Stokes I imaging in our previous work (Ikeda et al. 2016;
Akiyama et al. 2016), and TV regularization is also used in
other applications, such as Doppler tomography (Uemura
et al. 2015). As with the ℓ1 norm, we use a normalized
regularization parameter tL̃ defined by

I N4 max , 10t t
i

iL º L˜ ∣ ˜∣ ( )/

again following Akiyama et al. (2016).
The Stokes I image is solved with a nonnegative condition (i.e.,

I 0 ). The linear polarization image (henceforth the P image) is
calculated from reconstructed Q and U images by P Q iU= + .
In other words, Stokes Q and U images are solved independently.
Since the Stokes Q and U images can be negative, we solve these
images without the nonnegative condition.
The optimization problem, Equation (7), is convex, and

therefore its solution is uniquely determined regardless of initial
conditions. Many algorithms have been proposed to solve this
problem. We adopt the fast iterative shrinking thresholding
algorithm (FISTA), originally proposed by Beck & Teboulle
(2009b) for ℓ1 regularization and by Beck & Teboulle (2009a) for
TV regularization. We use a monotonic FISTA algorithm
(MFISTA) designed for ℓ1+TV regularization (see the Appendix
for details).

3. Imaging Simulations

3.1. Physically Motivated Models

In this paper, we adopt two physically motivated models of
the 1.3mm emission from M87 on event-horizon scales
(Figure 1). In this paper, we focus on imaging the total
intensity I and linear polarization Q and U emission.
The first model is a simple force-free jet model (hereafter,

forward-jet model) in the magnetically dominated regime
(Broderick & Loeb 2009; Lu et al. 2014). We adopt the model
image presented in Lu et al. (2014), which is based on model
parameters fitted to the spectral energy distribution of M87 and
the results of EHT observations at 1.3mm (Doeleman et al.
2012). The approaching jet is the dominant feature in this model.
The second model (henceforth, the counter-jet model) is

based on results of GRMHD simulations (Dexter et al. 2012)
and full-polarimetric general relativistic radiation transfer
calculations (Dexter 2016; M. Mościbrodzka et al. 2017, in
preparation). The dominant emission region is the counter-jet
illuminating the last photon orbit.

3.2. Simulated Observations

We simulate observations of model M87 images with the
EHT at 1.3mm (230 GHz) using the MIT Array Performance
Simulator (MAPS).16 In most aspects, the data generation
parameters are identical to those used in Akiyama et al. (2016),
except that here we use an integration time of 10 s. We simulate
data for a six-station array with a bandwidth of 3.5GHz at each
polarization, system temperatures described in the proposer’s
guide of 1 mm VLBI observations in ALMA Cycle 4, and a

16 http://www.haystack.mit.edu/ast/arrays/maps/
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correlation efficiency of 0.7 that includes a quantization
efficiency of two-bit sampling and other potential losses.
Observations are performed with an observational efficiency of
25% in time, during a GST (Greenwich sidereal time) range of
13–0 hr. This GST range corresponds to a time range when
M87 can be observed by either of two anchor stations of the
EHT, the Atacama Large Millimeter/submillimeter Array
(ALMA) or the Large Millimeter Telescope (LMT), at an
elevation greater than 20°. Here, we consider only thermal
errors. See Akiyama et al. (2016) for more details about the
conditions of simulated observations. Figure 2 shows the
resultant uv coverage of the simulated observations. Note that
the maximum baseline length of observations is 7.2Gλ,
corresponding to D 28.5maxl = μas.

3.3. Imaging

We reconstruct Stokes I, Q, and U images from simulated data
sets based on the method described in Section 2.2. In addition, we
attempt to solve images with the Cotton–Schwab CLEAN
algorithm (henceforth, CS-CLEAN; Schwab 1984) using uniform
weighting to evaluate the relative performance of our techniques in
exactly the same way as Akiyama et al. (2016). We use an
implementation of CS-CLEAN in the Common Astronomy
Software Applications (CASA) package.17 We adopt a field of
view (FOV) of 200μas, gridded into 100pixels in each of right
ascension and declination for both models. The resulting pixel size
of ∼2μas corresponds to a physical scale of ∼0.21Rs. The proposed method has two regularization parameters ℓL̃

and tL̃ . Images at each Stokes parameter were reconstructed at
five regularization parameters for both ℓL̃ and tL̃ , equally

Figure 1. Two physical models of M87 for 1.3mm emission on event-horizon scales, which are used for simulated observations. The upper panels show the forward-
jet model (Broderick & Loeb 2009; Lu et al. 2014), while the lower panels show the counter-jet model (Dexter et al. 2012). The leftmost panels show Stokes I images
with a linear color scale ranging from 0 to its peak intensity. The central two images are Stokes Q and U images with a linear color scale ranging from Pmax- ∣ ∣ to

Pmax∣ ∣, so that the center of the color scale (i.e., light green) shows an intensity of 0. The rightmost panels show P images. The color contour indicates linear
polarization intensity (P∣ ∣) with a linear scale from 0 to its peak, while the yellow bars show the EVPA distribution ( Parg 2( ) ).

Figure 2. The uv coverage of the simulated observations. Each baseline is split
into two colors to indicate the corresponding two stations.

17 https://casa.nrao.edu/
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spaced in logarithmic steps in the range 10 , ,101 3¼- + . In
addition to employing ℓ1+TV regularization, we also explore
pure ℓ1 and pure TV regularization separately ( 0tL =˜ or

0ℓL =˜ , respectively).
We evaluate the goodness of fit for each image and then

select the best-fit images with 10-fold cross validation
(henceforth CV; Akiyama et al. 2016). The observational data
(i.e., sampled visibilities) are randomly partitioned into 10
equal-sized subsamples. Nine of 10 subsamples are used in the
image reconstruction as the training set, and we obtain
the trained image. The remaining single subsample is used
as the validation set to test the model using 2c . The 2c between
the validation set and the image from the training set, which is
called the validation error, is a good indicator of goodness of
fit. For too-small regularization parameters, the trained image
would be overfitted and too complicated, resulting in a large
deviation between the trained image and the validation set (i.e.,
large validation error). On the other hand, for too-large
regularization parameters, the trained image would be too
simple and not well fitted to the training set, also resulting in a
large validation error. Thus, reasonable parameters can be
estimated by finding a parameter set that minimizes the
validation error. We repeat the procedure by changing
the subsample for validation data 10 times, until all subsamples
are used for both training and validation. As a result, we get 10
validation errors. The validation errors are averaged and then
used to determine optimal regularization parameters at each
Stokes parameter that minimize the averaged validation error.
Note that the final image is reconstructed by a full sample of
the observed visibilities.

To reduce the computational cost, we grid the observed
visibilities with the classic cell-averaging method (see
Thompson et al. 2001) prior to imaging. We adopt a FOV
size of 2mas for gridding, corresponding to a grid size of
∼0.1Gλ in uv space.

3.4. Evaluation of the Image Fidelity

We evaluate the quality of reconstructed images in two
ways. First, we employ the normalized root mean square error
(NRMSE) metric following Chael et al. (2016) and Akiyama
et al. (2016), defined as

I K
I K

K
NRMSE , , 11i i i

i i

2

2

å
å

=
-

( )
∣ ∣

∣ ∣
( )

where I and K are the image to be evaluated and the reference
image, respectively. For linear polarization images, we use the
complex linear polarization intensity (i.e., P Q Ui= + ) to
evaluate NRMSEs. Since both model images have finer
resolutions than is recoverable using the EHT, we adjust the
pixel size of the reconstructed image to that of the model image
with bicubic spline interpolation. Second, we measure the
structural dissimilarity (Wang et al. 2004) between the model
and the reconstructed images using the DSSIM metric adopted
in previous work (Fish et al. 2014; Lu et al. 2014). Since both
metrics show a similar trend, we show only the behavior of the
NRMSE in the figures that follow.

Of potential interest for future EHT observations is detecting
hypothesized blob-like flaring structure(s) in the accretion flow

or jet due to partially heated or overdense plasma (e.g.,
Broderick & Loeb 2006; Doeleman et al. 2009b). However,
image reconstructions can generate artifacts that mimic bright
components, making it difficult to identify such signatures
accurately. A useful evaluation tool for imaging techniques is
to identify how many bright blobs appear in the reconstructed
image. The input model images do not contain flaring
structures, so reconstructed images that show more than one
cluster of pixels falsely recover blob-like features. We therefore
also perform a cluster analysis on each image using Density-
Based Spatial Clustering of Applications with Noise
(DBSCAN; Ester et al. 1996) to identify these false features.
We configure DBSCAN as follows. The images contain a
range of pixel brightness values; therefore, we cluster the pixels
that have a brightness 50%> of its peak intensity, of which
separations are larger than 2 pixels μas. Then we cluster the
reconstructed images with the same parameters to find if false
blob-like features (clusters) are obtained.

4. Results

4.1. Stokes I Images

The results for Stokes I images of ℓ1, TV, and ℓ1+TV
regularizations are shown along with the model and CS-
CLEAN images in Figure 3. We also plot the NRMSE metric
for reconstructed images in the bottom panel, along with the
FWHM size of a convolving circular Gaussian beam. The best-
case scenario—the differences from the original input being
due solely to a loss of resolution, not to errors in reconstructing
the image—is shown by the black curve labeled “Model”
following previous work (Akiyama et al. 2016; Chael et al.
2016). This is calculated by taking the NRMSE between the
model image convolved with a circular Gaussian beam with an
FWHM and the original (unconvolved) model image. The
NRMSE of each of the reconstructed images, convolved with
circular Gaussian beams, is shown in the bottom panel.
All techniques reconstruct Stokes I images equally well on

scales comparable to or greater than the diffraction limit. The
NRMSEs of the reconstructed images only start to deviate from
the model images in the superresolution regime—namely on
scales finer than the diffraction limit. In this regime, the
NRMSEs are different by technique. For both models, ℓ1

regularization and CS-CLEAN have a common trend. The
minimum errors are achieved at a resolution of ∼30%–50% of
the diffraction limit, and then the NRMSEs show a rapid
increase in errors at smaller scales, broadly consistent with
previous studies on different model images and data products
(Chael et al. 2016; Akiyama et al. 2016). This clearly shows
that, on such small scales, the image is no longer sparse and
breaks the underlying assumption of both techniques. In
contrast, TV and ℓ1+TV regularizations show much more
modest variations in the superresolution regime. The minimum
errors are achieved at a resolution of ∼25%–30% of the
diffraction limit, smaller than for ℓ1 regularization and CS-
CLEAN. In addition, the NRMSEs show only a slight increase
in smaller scales. Both the TV and ℓ1+TV reconstructions
produce images that have a smooth distribution similar to the
model images, resulting in smaller errors than for ℓ1

regularization and CS-CLEAN, even if the TV and ℓ1+TV
are not convolved with a restoring beam.
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A clustering analysis with DBSCAN shows that images
with smoother regularizations (ℓ1+TV and TV) have only
one cluster of bright imaging pixels regardless of resolution.
The other two sparse techniques (CS-CLEAN and ℓ1) show
more than one cluster in smaller resolutions, as clearly seen
in Figure 3(a) for both models. Thus, even though all
techniques have similar optimal resolutions and minimum
NRMSEs for the counter-jet model, the bright emission has
more than one cluster at optimal resolutions for CS-CLEAN
and ℓ1. This indicates that sparse reconstructions with ℓ1

regularization and CS-CLEAN are more likely to misidentify

flaring substructures. We also note that, simultaneously, this
indicates that the NRMSE and DSSIM image fidelity metrics
may not always be an appropriate indicator for goodness of
feature reconstruction.

4.2. Linear Polarization Images

The results for linear polarization images (Stokes Q and U)
are shown in Figure 4. Similar to Stokes I (Figure 3), we show
the model/reconstructed images at the optimal resolution of
ℓ1+TV regularization in panel (a) and the NRMSEs in panel
(b). The NRMSEs show different trends for polarization than

Figure 3. Reconstructed Stokes I images and the evaluated metrics of the image fidelity for them. We adopt the same contour scaling as in Figure 1. (a) The original
model and reconstructed images for the forward-jet model (upper panels) and the counter-jet model (lower panels). All images are convolved with circular Gaussian
beams with the FWHM sizes corresponding to diameters of the yellow circles, which coincide with the optimal resolutions for ℓ1+TV regularization shown in (b). (b)
The NRMSE between the non-beam-convolved original model image and beam-convolved model/reconstructed images of the forward-jet (left) and counter-jet (right)
models, as a function of the FWHM size of the convolving circular beam. The black curve indicates the NRMSE of the model image, while other curves indicate the
NRMSEs of the reconstructed images. The red and blue arrows indicate the optimal resolution of ℓ1+TV regularization and CS-CLEAN, respectively, which minimize
the NRMSE.
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they do for Stokes I (Section 4.1) because Stokes Q and U can
be negative and because the linearly polarized flux is
significantly smaller than in total intensity, leading to a smaller
signal-to-noise ratio in these simulations.

CS-CLEAN shows the highest NRMSE over almost the
entire range of spatial scales, and its NRMSEs do not have a
global minimum at resolutions smaller than D1.5 .maxl Indeed,
as shown in Figure 4, CS-CLEAN can recover only a tiny
fraction of linearly polarized emission, and the reconstructed
EVPA distribution is inaccurate.

TV regularization, which shows good performances for
Stokes I imaging, is insufficient on its own for polarimetric
imaging. The much lower signal-to-noise ratios in Stokes Q
and U visibilities require a regularization parameter ∼10 times

larger than for Stokes I to minimize the validating error of 10-
fold CV, resulting in image distributions that are much blurrier
than the model images. The TV-regularized P images
reconstruct bright emissions better than CS-CLEAN, but there
are a lot of artificial diffuse emissions that dominate the
NRMSEs, as seen by the flat curves in Figure 4(b).
The ℓ1 regularization exhibits better NRMSEs than CS-

CLEAN for both models on most spatial scales. Since ℓ1

regularization suppresses the artificial diffuse emission seen
in TV regularization, the achieved NRMSE is better than TV
until at 20 % of the diffraction limit. However, as with
Stokes I, the images become too sparse on scales smaller than
∼30%–50% of the diffraction limit, causing a rapid rise in
NRMSEs.

Figure 4. Reconstructed linear polarization images (top) and evaluated metrics of the image fidelity for them (bottom). Panels are as in Figure 3. Color contours and
EVPAs of the top panel are shown as in Figure 1. The NRMSEs are calculated from the complex linear polarization intensity images P , as described in Section 3.4.
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The ℓ1+TV regularization provides reasonable linear
polarization images with the most reasonable sparseness and
smoothness, stably showing good performance across the entire
range of spatial scales. The optimal resolution of ∼20%–25%
is comparable to Stokes I and is the best among the four
techniques. These results clearly show that ℓ1+TV can achieve
the best image fidelity among the techniques presented in this
paper, not only for superresolution imaging but also for more
general imaging on scales larger than the diffraction limit.

5. Discussions and Summary

We have presented a new technique for full-polarimetric
imaging with radio interferometry using sparse modeling. As
shown in Sections 3 and 4, ℓ1+TV regularization stably shows
better performance than either ℓ1 or TV regularization alone
and than the most widely used Cotton–Schwab CLEAN. This
applies regardless of Stokes parameters. In particular, the
superiority of the combined ℓ1+TV regularization is significant
for linear polarizations on a wide range of spatial scales from
superresolution regimes to scales larger than the diffraction
limit.

Our technique can be applied to most existing radio
interferometers whose data products are full-complex visibi-
lities in all four Stokes parameters. Although we did not image
the circular polarization (Stokes V ) in this work, our results
suggest that ℓ1+TV regularization would likely achieve a better
performance than the Cotton–Schwab CLEAN for circular
polarization too, since it is mathematically similar to Stokes Q
and U imaging.

We note future prospects for the application of our
techniques to VLBI, including future EHT observations. In
VLBI observations, the absolute phase information generally
cannot be obtained, due to nonsynchronized local oscillators
and quite different atmospheric phase delays at different sites
(see Thompson et al. 2001). In addition, at short-millimeter/
submillimeter wavelengths, even the source visibility phase
cannot be measured, due to the rapidly varying atmospheric
delays. In VLBI, the visibility phase is traditionally calibrated
based on phase closure, using the self-calibration technique
with hybrid/differential mapping (e.g., Walker 1995). The
systematic phase errors derived using Stokes I data can be
applied to Stokes Q and U, since station-based systematic
errors should be the same among the Stokes parameters. Our
techniques can be applied to the VLBI data after self-
calibrating Stokes I data with the traditional hybrid/differential
mapping or the Stokes I image obtained with new state-of-the-
art imaging techniques based on closure quantities such as
MEMs (e.g., Buscher 1994; Chael et al. 2016), a patch prior
(CHIRP; Bouman et al. 2015), sparse modeling (Akiyama
et al. 2016), and PRECL (Ikeda et al. 2016), which have been
developed for optical interferometers or the EHT. In a
forthcoming paper, we will evaluate the performance of the
proposed technique for data with station-based systematic
phase errors, which are common in VLBI.

We also note that there is a new method for Stokes I and
linear polarization, very recently proposed in Chael et al.
(2016), which is designed for VLBI. This method solves first
for the Stokes I images from visibility amplitudes and closure
phases at Stokes I. Then, the linear polarization images are
solved using the reconstructed Stokes I images and complex
polarimetric ratios (ratios of the Stokes Q and U visibilities to

the Stokes I visibilities). All of these VLBI observables are
robust against station-based phase errors. Through the above
processes, Stokes I visibility phases are recovered from
imaging with visibility amplitudes and closure phases, and
the visibility phases at Stokes Q and U are phase-referenced
from Stokes I through the polarimetric ratio. The Stokes I and
polarization intensity (i.e., P∣ ∣) images are regularized by the
entropy term of MEM, while the EVPA distribution (i.e.,

Parg 2( ) ) is regularized independently by a smooth regular-
ization term such as TV. Chael et al. (2016) demonstrate that
this method can also achieve a better fidelity and superior
optimal resolution compared to the Cotton–Schwab CLEAN.
An advantage of this technique is that it can simultaneously
reconstruct I, Q, and U images from robust VLBI observables.
In addition, the reconstructed images strictly satisfy I P>∣ ∣ ∣ ∣,
which can suppress artifacts in P images in regions where I is
not bright. The disadvantage of this technique is that the
optimization problem is highly nonlinear and nonconvex, and
that the solution can potentially be initial-condition dependent
not only in Stokes I but also in Stokes Q and U. Furthermore, Q
and U images are reconstructed from the polarimetric ratio that
can have larger uncertainties than the Stokes visibilities,
particularly at long baselines, limiting the dynamic range,
image sensitivity, and optimal spatial resolution. An alter-
native, mathematically equivalent way—phase-referencing
with self-calibration techniques—will avoid such disadvan-
tages in polarimetric imaging.
Future work for the techniques proposed in this paper will

include other sparse regularizations for multiresolution ima-
ging, such as ℓ1+wavelet/curvelet transformation (e.g., Li
et al. 2011; Carrillo et al. 2014; Dabbech et al. 2015; Garsden
et al. 2015). In addition, the application of and experimentation
with other forms of TV would be important. We have been
using the most widely used isotropic TV (Rudin et al. 1992) for
TV regularization, which preserves sharp edges in the image.
This would be useful for optically thick objects like stars, but
might not be optimal for emission from optically thin objects
that have smoother edges in general. An alternative form of
sparse regularization in the gradient domain that favors
smoother edges is given by, for instance,

x x x x x . 12
i j

i j i j i j i jtv 1, ,
2

, 1 ,
22 åå= - + -+ +∣∣ ∣∣ (∣ ∣ ∣ ∣ ) ( )

This function is also convex, similar to the TV term adopted in
this work, and can be an alternative option. The performance of
these sparse regularizers has not yet been fully evaluated for
superresolution imaging of compact objects with complicated
structures on scales comparable to the diffraction limit, as is
expected for black hole shadow imaging with the EHT. We will
study this issue both for imaging with the full-complex
visibility and closure quantities as an extension of this work
and our previous work (Honma et al. 2014; Akiyama et al.
2016; Ikeda et al. 2016).
A relevant issue of our proposed methods is the computa-

tional time, most of which is spent in determining the optimum
parameters for the regularization terms. Since we adopt 10-fold
CV for determining regularization parameters, we need to do
image reconstruction 11 times for each set of regularization
parameters. This is not serious for imaging simulated data sets
in this paper, which takes about a few hours in total for each
Stokes parameter, although it would be a relevant issue for
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imaging larger data sets or wider FOVs. Recently, Obuchi &
Kabashima (2016) have proposed an accurate approximation of
the validating error for n-fold CV for LASSO, which can be
derived from the image reconstruction of full data sets. A
similar approximation for TV regularization has also been
derived very recently (Obuchi et al. 2016). These approxima-
tions may allow validating errors to be estimated by imaging
the full data set just once at each set of regularization
parameters. We will implement these estimators for our
algorithm, which will significantly reduce the whole computa-
tional time (∼10 times shorter for 10-fold CV). We will also
work on optimizing and accelerating the MFISTA algorithms
by parallel computing such as GPGPU (general-purpose
computing on graphics processing units). This will be helpful
for extending our works to wider-FOV imaging or imaging of
much larger data sets with many more stations than VLBI
networks, such as ALMA.
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Appendix
Monotonic FISTA Algorithm

We show the details of the algorithms that were used to solve
Equation (7). Our algorithms are variations of the monotonic
FISTA (MFISTA) that was introduced in Beck & Teboulle
(2009a, 2009b). We first show the general framework of
MFISTA and discuss how we applied it for our problem.

A.1. General Framework of MFISTA

The general form of the problem is defined as follows:

x x xF f gmin , 13
x C

º +
Î

{ ( ) ( ) ( )} ( )

where x nÎ R , and C nÍ R is some closed subset of nR . The
properties assumed for xf ( ) and xg ( ) are summarized below.

1. xf : n ( ) R R is a convex function of x. It is
continuously differentiable, and the gradient xf ( ) is

Lipschitz continuous, where L( f ) denotes the Lipschitz
constant of xf ( ).

2. xg : ,n  -¥ ¥( ) ( ]R is a convex function of x. It is
not necessarily smooth.

The pseudocode of MFISTA is summarized in Algo-
rithm A.1.

Algorithm A.1. MFISTA

1: Take x n
0 Î R , L0 Î R , and 1h > .

2: y x1 0¬ , t 11 ¬ .
3: for k 1 do
4: Lk ¬INITIALIZE yL ;k k1-( ) ▹ See A.2
5: z yp L;k C k k¬ ( ) yp L;C k k▹ ( ) is defined in Equation (15)

6: tk
t

1
1 1 4

2
k
2

¬+
+ +

7: if x zF Fk k>( ) ( ) then
8: x zk k¬
9: y x x xk k

t

t k k1
1

1
k

k 1
¬ + -+

-
-

+
( )

10: else
11: x xk k 1¬ -

12: y x z xk k
t

t k k1
k

k 1
¬ + -+ +

( )
13: end if
14: if converged then
15: break
16: end If
17: end For

If the upper bound of the Lipschitz constant L( f ) is known, L
is set to the upper bound, and INITIALIZE yL ,k k1-( ) can be
omitted. Otherwise we need to find an appropriate value of Lk.
Let us define a function x yQ L, ;( ) as follows:

x y y x y y

x y x

Q L f f
L

g

, ; ,

2
, 142

2

= + á -  ñ

+ - + 

( ) ( ) ( )

( ) ( )

where ,á ñ· · denotes the inner product. The function yp L;C ( ) is
the proximal map, which is defined as follows:

y x y

x y y x

p L Q L

L

L
f g

; argmin , ;

argmin
2

1
. 15

x

x

C
C

C 2

2

=

= - -  +

Î

Î

⎜ ⎟
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫
⎬
⎭

( ) ( )

( ) ( ) ( )

The practical form of the proximal map depends on the
definition of xg ( ).
The procedure INITIALIZE xL;( ) is defined as follows using
x yQ L, ;( ) and yp L;C ( ).

Algorithm A.2. Initial L

1: procedure INITIALIZE xL;
2: repeat
3: L Lh¬
4: until x x xF p L Q p L L; ; , ;C C( ( )) ( ( ) )
5: return L
6: end procedure

MFISTA only uses the gradient of xf ( ) and is known to
have a fast convergence rate. Let x* be the optimal point of the
problem in Equation (7). The MFISTA algorithm has the

9

The Astronomical Journal, 153:159 (10pp), 2017 April Akiyama et al.



following property (Beck & Teboulle 2009a, 2009b):

x x
x x

xF F
L f

k
C

2

1
, . 16k

0 2
2

2
*

*
*

a
-

-
+

" Î
 ( ) ( ) ( )

( )
( )

A.2. Applying MFISTA for Polarimetric Imaging

We explain how we applied MFISTA to solve Equation (7).
For the Stokes I image, S I= and I 0i  . Since I Ii i1 = å 

holds, we can apply MFISTA by defining f (·), g (·), and C as
follows:

I I FI I I

I

f I g

C I i

, ,

0, for . 17

ℓ
i

i t

i

2
2

tv



å= - + L = L

= "

   ( ) ˜ ( )

{ ∣ } ( )

The form of the proximal map yp L;C ( ) for the case
x xg tv=  ( ) has been discussed in Beck & Teboulle

(2009a). We used their fast projected gradient (FPG) method
restricting I 0i  .

For the Stokes Q, U, and V image, each component can take
a negative value. MFISTA can be applied by defining f (·) and
g (·) as follows:

S S FS S S S
S Q U V

f g, ,
, or . 18

t2
2

1 1 tv= - = L + L
=
     ( ) ˜ ( )

( )

The proximal map yp L;C ( ) for this case can also be realized
by a slight modification of FPG.
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