403 research outputs found
Proteomic Analysis of Saliva from Patients with Oral Chronic Graft-Versus-Host Disease
AbstractChronic graft-versus-host disease (cGVHD) is an immune-mediated disorder and is the major long-term complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). The oral mucosa, including the salivary glands, is affected in the majority of patients with cGVHD; however, at present there is only a limited understanding of disease pathobiology. In this study, we performed a quantitative proteomic analysis of saliva pooled from patients with and without oral cGVHD—cGVHD(+) and cGVHD(−), respectively—using isobaric tags for relative and absolute quantification labeling, followed by tandem mass spectrometry. Among 249 salivary proteins identified by tandem mass spectrometry, 82 exhibited altered expression in the oral cGVHD(+) group compared with the cGVHD(−) group. Many of the identified proteins function in innate or acquired immunity, or are associated with tissue maintenance functions, such as proteolysis or the cytoskeleton. Using ELISA immunoassays, we further confirmed that 2 of these proteins, IL-1 receptor antagonist and cystatin B, showed decreased expression in patients with active oral cGVHD (P < .003). Receiver operating curve characteristic analysis revealed that these 2 markers were able to distinguish oral cGVHD with a sensitivity of 85% and specificity of 60%, and showed slightly better discrimination in newly diagnosed patients evaluated within 12 months of allo-HSCT (sensitivity, 92%; specificity 73%). In addition to identifying novel potential salivary cGVHD biomarkers, our study demonstrates that there is coordinated regulation of protein families involved in inflammation, antimicrobial defense, and tissue protection in oral cGVHD that also may reflect changes in salivary gland function and damage to the oral mucosa
Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms
BACKGROUND: The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms. METHODS: A 9-field conformal treatment plan was generated on an inhomogeneous phantom with lung mimics and a soft tissue equivalent insert, mimicking a lung tumor. The dose distribution was calculated with the Pencil Beam and Collapsed Cone algorithms implemented in Masterplan (Nucletron) and the Monte Carlo system XVMC and validated using Gafchromic EBT films. Differences in dose distribution were evaluated. The plans were then optimized by adding segments to the outer shell of the target in order to increase the dose near the interface to the lung. RESULTS: The Pencil Beam algorithm overestimated the dose by up to 15% compared to the measurements. Collapsed Cone and Monte Carlo predicted the dose more accurately with a maximum difference of -8% and -3% respectively compared to the film. Plan optimization by adding small segments to the peripheral parts of the target, creating a 2-step fluence modulation, allowed to increase target coverage and homogeneity as compared to the uncorrected 9 field plan. CONCLUSION: The use of forward 2-step fluence modulation in radiotherapy of small lung lesions allows the improvement of tumor coverage and dose homogeneity as compared to non-modulated treatment plans and may thus help to increase the local tumor control probability. While the Collapsed Cone algorithm is closer to measurements than the Pencil Beam algorithm, both algorithms are limited at tissue/lung interfaces, leaving Monte-Carlo the most accurate algorithm for dose prediction
Functional Characterization of Aquaporin-4 Specific T Cells: Towards a Model for Neuromyelitis Optica
Antibodies to the water channel protein aquaporin-4 (AQP4), which is expressed in astrocytic endfeet at the blood brain barrier, have been identified in the serum of Neuromyelitis optica (NMO) patients and are believed to induce damage to astrocytes. However, AQP4 specific T helper cell responses that are required for the generation of anti-AQP4 antibodies and most likely also for the formation of intraparenchymal CNS lesions have not been characterized. specific T cells were present in the natural T cell repertoire of wild type C57BL/6 mice and T cell lines were raised. However, active immunization with these AQP4 peptides did not induce signs of spinal cord disease. Rather, sensitization with AQP4 peptides resulted in production of IFN-γ, but also IL-5 and IL-10 by antigen-specific T cells. Consistent with this cytokine profile, the AQP4 specific antibody response upon immunization with full length AQP4 included IgG1 and IgG2, which are associated with a mixed Th2/Th1 T cell response. restricted AQP4 specific T cell epitopes will allow us to investigate how AQP4 specific autoimmune reactions are regulated and to establish faithful mouse models of NMO that include both cellular and humoral responses against AQP4
Use of new radiochromic devices for peripheral dose measurement: potential in-vivo dosimetry application
The authors have studied the feasibility of using three new high-sensitivity radiochromic devices in measuring the doses to peripheral points outside the primary megavoltage photon beams. The three devices were GAFCHROMIC® EBT film, prototype Low Dose (LD) Film, and prototype LD Card. The authors performed point dosimetry using these three devices in water-equivalent solid phantoms at x = 3,5,8,10, and 15 cm from the edge of 6 MV and 15 MV photon beams of 10x10 cm2, and at depths of 0, 0.5 cm, and depth of maximum dose. A full sheet of EBT film was exposed with 5000 MU. The prototype LD film pieces were 1.5x2 cm2 in size. Some LD films were provided in the form of a card in 1.8x5 cm2 holding an active film in 1.8x2 cm2. These are referred to as “LD dosimeter cards”. The small LD films and cards were exposed with 500 MU. For each scanned film, a 6 mm circular area centered at the measurement point was sampled and the mean pixel value was obtained. The calibration curves were established from the calibration data for each combination of film/cards and densitometer/scanner. The doses at the peripheral points determined from the films were compared with those obtained using ion chamber at respective locations in a water phantom and general agreements were found. It is feasible to accurately measure peripheral doses of megavoltage photon beams using the new high-sensitivity radiochromic devices. This near real-time and inexpensive method can be applied in a clinical setting for dose measurements to critical organs and sensitive patient implant devices
Carbon Dynamics, Development and Stress Responses in Arabidopsis: Involvement of the APL4 Subunit of ADP-Glucose Pyrophosphorylase (Starch Synthesis)
An Arabidopsis thaliana T-DNA insertional mutant was identified and characterized for enhanced tolerance to the singlet-oxygen-generating herbicide atrazine in comparison to wild-type. This enhanced atrazine tolerance mutant was shown to be affected in the promoter structure and in the regulation of expression of the APL4 isoform of ADP-glucose pyrophosphorylase, a key enzyme of the starch biosynthesis pathway, thus resulting in decrease of APL4 mRNA levels. The impact of this regulatory mutation was confirmed by the analysis of an independent T-DNA insertional mutant also affected in the promoter of the APL4 gene. The resulting tissue-specific modifications of carbon partitioning in plantlets and the effects on plantlet growth and stress tolerance point out to specific and non-redundant roles of APL4 in root carbon dynamics, shoot-root relationships and sink regulations of photosynthesis. Given the effects of exogenous sugar treatments and of endogenous sugar levels on atrazine tolerance in wild-type Arabidopsis plantlets, atrazine tolerance of this apl4 mutant is discussed in terms of perception of carbon status and of investment of sugar allocation in xenobiotic and oxidative stress responses
Molecular Cloning and Characterization of Two Genes Encoding Dihydroflavonol-4-Reductase from Populus trichocarpa
Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is a rate-limited enzyme in the biosynthesis of anthocyanins and condensed tannins (proanthocyanidins) that catalyzes the reduction of dihydroflavonols to leucoanthocyanins. In this study, two full-length transcripts encoding for PtrDFR1 and PtrDFR2 were isolated from Populus trichocarpa. Sequence alignment of the two PtrDFRs with other known DFRs reveals the homology of these genes. The expression profile of PtrDFRs was investigated in various tissues of P. trichocarpa. To determine their functions, two PtrDFRs were overexpressed in tobacco (Nicotiana tabacum) via Agrobacterium-mediated transformation. The associated color change in the flowers was observed in all 35S:PtrDFR1 lines, but not in 35S:PtrDFR2 lines. Compared to the wild-type control, a significantly higher accumulation of anthocyanins was detected in transgenic plants harboring the PtrDFR1. Furthermore, overexpressing PtrDFR1 in Chinese white poplar (P. tomentosa Carr.) resulted in a higher accumulation of both anthocyanins and condensed tannins, whereas constitutively expressing PtrDFR2 only improved condensed tannin accumulation, indicating the potential regulation of condensed tannins by PtrDFR2 in the biosynthetic pathway in poplars
Extra-Intestinal Manifestations of Familial Adenomatous Polyposis
Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disorder, which results from a germ line mutation in the APC (adenomatous polyposis coli) gene. FAP is characterized by the formation of hundreds to thousands of colorectal adenomatous polyps. Although the development of colorectal cancer stands out as the most prevalent complication, FAP is a multisystem disorder of growth. This means, it is comparable to other diseases such as the MEN syndromes, Von Hippel-Lindau disease and neurofibromatosis. However, the incidence of many of its clinical features is much lower. Therefore, a specialized multidisciplinary approach to optimize health care—common for other disorders—is not usually taken for FAP patients. Thus, clinicians that care for and counsel members of high-risk families should have familiarity with all the extra-intestinal manifestations of this syndrome. FAP-related complications, for which medical attention is essential, are not rare and their estimated lifetime risk presumably exceeds 30%. Affected individuals can develop thyroid and pancreatic cancer, hepatoblastomas, CNS tumors (especially medulloblastomas), and various benign tumors such as adrenal adenomas, osteomas, desmoid tumors and dental abnormalities. Due to improved longevity, as a result of better prevention of colorectal cancer, the risk of these clinical problems will further increase
- …