165 research outputs found

    A chromosomal rearrangement in a child with severe speech and language disorder separates FOXP2 from a functional enhancer

    No full text
    Mutations of FOXP2 in 7q31 cause a rare disorder involving speech apraxia, accompanied by expressive and receptive language impairments. A recent report described a child with speech and language deficits, and a genomic rearrangement affecting chromosomes 7 and 11. One breakpoint mapped to 7q31 and, although outside its coding region, was hypothesised to disrupt FOXP2 expression. We identified an element 2 kb downstream of this breakpoint with epigenetic characteristics of an enhancer. We show that this element drives reporter gene expression in human cell-lines. Thus, displacement of this element by translocation may disturb gene expression, contributing to the observed language phenotype

    Surveillance for Antimicrobial Resistance in Croatia

    Get PDF
    This study intended to verify, through microbiological techniques and TEM investigations, the killing of bacterial spores after treatment in steam autoclave, and to propose strictly morphological considerations about the target of this sterilisation process. Autoclave is the most common device for sterilising instruments in order to prevent cross infections in dental offices. The autoclave efficiency has been improved in the last years and part of this improvement is related to both a better and more correct use of the autoclave system and to the technological innovations introduced in the last generation of devices. However, associations as ADA or CDC suggest to regularly verify the process of 'autoclaving' through biological indicators (BI). The most commonly used BI are made of spores strips or suspensions of Bacillus Subtilis (pb 168) and Bacillus Stearothermophilus (ATCC 10149). They visually prove, changing colours on enzymatic base, the death of micro-organism and if the physical parameters, necessary for sterilisation, have been achieved. These two strains of endospore-forming bacteria were processed and prepared following two different techniques: Karnovsky fixed and epon embedded--phosphotungstic acid fixed for direct observation. The kind and the extent of analysed modifications are extremely various: from deep lacerations, which changed the spore structure, to little clefts which let the cytoplasm go out

    Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations

    Get PDF
    We provide a novel method to improve the use of natural tagging approaches for subpopulation discrimination and source-origin identification in aquatic and terrestrial animals with a passive dispersive phase. Our method integrates observed site-referenced biological information on individuals in mixed populations with a particle-tracking model to retrace likely dispersal histories prior to capture (i.e., particle backtracking). To illustrate and test our approach, we focus on western Lake Erie\u27s yellow perch (Perca flavescens) population during 2006-2007, using microsatellite DNA and otolith microchemistry from larvae and juveniles as natural tags. Particle backtracking showed that not all larvae collected near a presumed hatching location may have originated there, owing to passive drift during the larval stage that was influenced by strong river-and wind-driven water circulation. Re-assigning larvae to their most probable hatching site (based on probabilistic dispersal trajectories from the particle backtracking model) improved the use of genetics and otolith microchemistry to discriminate among local breeding subpopulations. This enhancement, in turn, altered (and likely improved) the estimated contributions of each breeding subpopulation to the mixed population of juvenile recruits. Our findings indicate that particle backtracking can complement existing tools used to identify the origin of individuals in mixed populations, especially in flow-dominated systems

    The pale spear-nosed bat : a neuromolecular and transgenic model for vocal learning

    Get PDF
    Funding: UK Research and Innovation (Grant Number(s): MR/T021985/1; Grant recipient(s): Sonja Vernes). Max-Planck-Gesellschaft (Grant Number(s): Max Planck Research Group ; Grant recipient(s): Sonja Vernes). Human Frontier Science Program (Grant Number(s): RGP0058/2016, RGP0058/2016; Grant recipient(s): Uwe Firzlaff, Sonja Vernes).Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.Publisher PDFPeer reviewe

    Genetic diversity and population structure analysis of isolates of the rice false smut pathogen Ustilaginoidea virens in India.

    Get PDF
    Not AvailableGenetic diversity assessment and population structure analysis are essential for char acterization of pathogens and their isolates. Markers are essential tools for explor ing genetic variation among the isolates. False smut of rice caused by Ustilaginoidea virens, formerly Villosiclava virens, is a major emerging disease of rice in India. A high level of variability is observed at the field level, but no information is available from India on genetic diversity and population structure. This is the first report of genetic diversity and population structure of U. virens from India that included 63 isolates dis tributed across the vast geographical area of eastern and north-eastern India (18.9 to 26.7°N and 82.6 to 94.2°E). Seventeen RAPDs and 14 SSRs were identified as poly morphic and a total of 140 alleles were detected across the populations. The average number of alleles per locus for each primer was 4.5. All the isolates were grouped into two major clusters, with partial geographical segregation that was supported by principal coordinate analysis. Mantel test suggested genetic distance within the iso lates increased with increasing geographical distance. Analysis of molecular variation showed more genetic variation within populations and less among populations. This outcome will help in understanding genetic diversity of U. virens from eastern and north-eastern India and in planning effective management strategies

    Human Resources and the Resource Based View of the Firm

    Get PDF
    The resource-based view (RBV) of the firm has influenced the field of strategic human resource management (SHRM) in a number of ways. This paper explores the impact of the RBV on the theoretical and empirical development of SHRM. It explores how the fields of strategy and SHRM are beginning to converge around a number of issues, and proposes a number of implications of this convergence

    Towards Critical Human Resource Management Education (CHRME): a sociological imagination approach

    Get PDF
    This article explores the professional standing of the discipline of human resource management (HRM) in business schools in the post-financial crisis period. Using the prism of the sociological imagination, it explains the learning to be gained from teaching HRM that is sensitive to context, power and inequality. The context of crisis provides ideal circumstances for critical reflexivity and for integrating wider societal issues into the HRM curriculum. It argues for Critical Human Resource Management Education or CHRME, which, if adopted, would be an antidote to prescriptive practitioner-oriented approaches. It proceeds to set out five principles for CHRME: using the ‘sociological imagination’ prism; emphasizing the social nature of the employment relationship; investigating paradox within HRM; designing learning outcomes that encourage students to appraise HRM outcomes critically; and reflexive critique. Crucially, CHRME offers a teaching strategy that does not neglect or marginalize the reality of structural power, inequality and employee work experiences

    DNA methylation predicts age and provides insight into exceptional longevity of bats

    Get PDF
    Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression

    Six reference-quality genomes reveal evolution of bat adaptations

    Get PDF
    Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our �Tool to infer Orthologs from Genome Alignments� (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease.s E.W.M. and M.P. were supported by the Max Planck Society and were partially funded by the Federal Ministry of Education and Research (grant 01IS18026C). All data produced in Dresden were funded directly by the Max Planck Society. S.C.V., P.D. and K.L. were funded by a Max Planck Research Group awarded to S.C.V. from the Max Planck Society, and a Human Frontiers Science Program (HFSP) Research grant awarded to S.C.V. (RGP0058/2016). M.H. was funded by the German Research Foundation (HI 1423/3-1) and the Max Planck Society. E.C.T. was funded by a European Research Council Research Grant (ERC2012-StG311000), UCD Wellcome Institutional Strategic Support Fund, financed jointly by University College Dublin and SFI-HRB-Wellcome Biomedical Research Partnership (ref 204844/Z/16/Z) and Irish Research Council Consolidator Laureate Award. G.M.H. was funded by a UCD Ad Astra Fellowship. G.J. and E.C.T. were funded from the Royal Society/Royal Irish Academy cost share programme. L.M.D. was supported by NSF-DEB 1442142 and 1838273, and NSF-DGE 1633299. D.A.R. was supported by NSF-DEB 1838283. E.D.J. and O.F. were funded by the Rockefeller University and the Howard Hughes Medical Institute. We thank Stony Brook Research Computing and Cyberinfrastructure, and the Institute for Advanced Computational Science at Stony Brook University for access to the high-performance SeaWulf computing system (which was made possible by a National Science Foundation grant (no. 1531492)); the Long Read Team of the DRESDEN-concept Genome Center, DFG NGS Competence Center, part of the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden; S. Kuenzel and his team of the Max Planck Institute of Evolutionary Biology; members of the Vertebrate Genomes Laboratory at The Rockefeller University for their support; L. Wiegrebe, U. Firzlaff and M. Yartsev, who gave us access to captive colonies of Phyllostomus and Rousettus bats and aided with tissue sample collection; and M. Springer, for completing the SVDquartet analyses, and providing phylogenetic input and expertise
    corecore