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RESEARCH ARTICLE

Particle Backtracking Improves Breeding
Subpopulation Discrimination and Natal-
Source Identification in Mixed Populations
Michael E. Fraker1*, Eric J. Anderson2, Reed M. Brodnik1, Lucia Carreon-Martinez3,
Kristen M. DeVanna1, Brian J. Fryer4, Daniel D. Heath4, Julie M. Reichert4, Stuart
A. Ludsin1

1 Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State
University, Columbus, Ohio, United States of America, 2 NOAA-GLERL, Ann Arbor, Michigan, United States
of America, 3 Department of Biology, University of Texas at Brownsville, Brownsville, Texas, United States of
America, 4 GLIER, University of Windsor, Windsor, ON, N9B 3P4, Canada

* fraker.24@osu.edu

Abstract
We provide a novel method to improve the use of natural tagging approaches for subpopu-

lation discrimination and source-origin identification in aquatic and terrestrial animals with a

passive dispersive phase. Our method integrates observed site-referenced biological infor-

mation on individuals in mixed populations with a particle-tracking model to retrace likely

dispersal histories prior to capture (i.e., particle backtracking). To illustrate and test our ap-

proach, we focus on western Lake Erie’s yellow perch (Perca flavescens) population during

2006–2007, using microsatellite DNA and otolith microchemistry from larvae and juveniles

as natural tags. Particle backtracking showed that not all larvae collected near a presumed

hatching location may have originated there, owing to passive drift during the larval stage

that was influenced by strong river- and wind-driven water circulation. Re-assigning larvae

to their most probable hatching site (based on probabilistic dispersal trajectories from the

particle backtracking model) improved the use of genetics and otolith microchemistry to dis-

criminate among local breeding subpopulations. This enhancement, in turn, altered (and

likely improved) the estimated contributions of each breeding subpopulation to the mixed

population of juvenile recruits. Our findings indicate that particle backtracking can comple-

ment existing tools used to identify the origin of individuals in mixed populations, especially

in flow-dominated systems.

Introduction
Identifying dispersal patterns and the degree of connectivity among local breeding subpopula-
tions, as well as the natal source(s) of dispersed individuals in a mixed population, can improve
our ability to understand the structure and dynamics of aquatic and terrestrial populations [1–
2]. In turn, such understanding can have applied benefits. Most obvious has been the
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enhancement of species conservation strategies wherein knowledge of dispersal pathways and
subpopulation connectivity has guided the placement of dispersal corridors and the design of
reserve networks [3–4]. Knowledge of the compositional makeup of a mixed population also
can improve the effectiveness of resource management [5–6] by allowing for the development
of harvest allocation strategies that protect important breeding subpopulations [5] and by iden-
tifying underperforming subpopulations that might be in need of rehabilitation [7]. Likewise,
the identification of key or unexpected sources of individuals to a mixed population can help
with the control or mitigation of native pests, invasive species, or disease [8–11].

To enhance our ability to address questions related to dispersal, population connectivity,
and population structure and dynamics, much effort has been spent developing tools that can
discriminate among local breeding subpopulations [12–13]. This need is paramount because
mixing of local breeding subpopulations is common during one or more life stages for many
species, including aquatic and terrestrial plants [14], invertebrate animals [15], and vertebrates
[16] (but see also [3]). While artificial tags continue to offer a viable means to discriminate
among breeding subpopulations in many systems, technological advances made during the
past two decades have increased the use of natural tags [13].

To be a reliable natural marker, it needs to be consistently found in individuals originating
from a particular location, must vary among breeding sources, and must remain unchanged
during ontogeny. Otherwise, the link to the natal site would be lost [12–13]. Several types of
natural tags have been explored as breeding subpopulation markers, including body structures
(typically “hard parts”) that can record chemical or isotopic signatures from the environment
in which an individual resides [13,17–20] and various genetic markers [13,19–20].

While the approaches described above have been used in solo and combination with varying
levels of success, each is potentially limited by the fundamental assumption that the individuals
used to develop functions that can discriminate among local breeding subpopulations originat-
ed at their collection site. For some organisms, this assumption may be quite realistic (e.g., or-
ganisms that breed in an upstream river that is far removed from the downstream mixing
zone). For others, the possibility exists that an individual collected in one breeding location
may not have originated there, but instead passively or actively dispersed to its collection loca-
tion from a different source (breeding) location. Such a possibility seems especially plausible in
situations in which a local breeding population reproduces in or near a mixing zone, or in cases
where the early life stages of a species are highly susceptible to passive dispersal by physical
forces such as wind or water circulation (e.g., some fishes, aquatic and terrestrial invertebrate
animals, and plants). In these systems, failure to account for pre-collection dispersal could lead
to sub-par discrimination abilities that might suggest a technique is not useful (when it actually
might be). Or worse, the imprecise or inaccurate discrimination functions developed might
provide misleading ecological insights that then drive the development of inappropriate man-
agement or conservation strategies.

Given these concerns, we suggest complementing natural tagging approaches with informa-
tion on pre-collection dispersal, which can be obtained from particle backtracking (hindcast-
ing) approaches wherein hydrodynamic or atmospheric models are used to recreate
probabilistic dispersal histories prior to collection [21]. Combining particle backtracking with
natural tagging seems especially useful when considering that hydrodynamic and atmospheric
models are becoming increasingly accurate and have been calibrated and validated for many
ecosystems [22–24]. By integrating these approaches, the source-origin of individuals that are
used to develop the breeding subpopulation discrimination and classification functions can be
confirmed or revised as needed, thus eliminating the assumption of natural tagging approaches
that the collection site of young individuals is equivalent to the natal (source-origin) site [18,
25–27].
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Particle backtracking involves using water or wind circulation computer simulation models
to retrace the most likely path a dispersed individual has taken [11, 21, 28]. Backtracking is cur-
rently most useful when individuals can be considered to be passively dispersed particles (e.g.,
small propagules such as eggs, seeds, or small larvae), as individual behavior can strongly influ-
ence dispersal and often is difficult to accurately include in a model [29–30]. Theoretically,
when dispersal histories are combined with information from a natural marker and other rele-
vant biological information (e.g., particle age), the reliability of initial assignment should im-
prove, potentially leading to an increased ability to discriminate among breeding
subpopulations and determine the natal origin of individuals in a mixed population.

Here, we provide an example of how particle backtracking simulations can improve the use
of two commonly used natural markers—otolith micro-elemental composition and microsatel-
lite DNA [31–32]—to discriminate among yellow perch (Perca flavescens) breeding subpopula-
tions and determine their relative contribution of recruits to the age-0 juvenile stage of in the
western basin of Lake Erie (USA-Canada), a system with strong river- and wind-driven water
currents [33]. Because our primary intention is to illustrate the potential of backtracking to im-
prove discrimination and assignment capabilities rather than to precisely delineate yellow
perch subpopulation structure, we used intentionally broad subpopulation assignments (i.e.,
north shore and south shore). Towards this end, we first use larval yellow perch collection loca-
tion to develop functions to discriminate between our two geographically distinct breeding
subpopulations [27]. We then use these functions to assign (unknown-origin) juveniles from
the mixed, open-lake population to one of the two breeding (hatching) locations. Finally, we
show how combining probabilistic backtracking trajectories of larval yellow perch (particle)
dispersal prior to their collection with knowledge of larval age (i.e., days post-hatch from oto-
liths) can be used to revise initial hatching locations that, in turn, 1) improve the consistency of
our breeding subpopulation discrimination functions that are based on larvae and 2) alter (and
thereby seemingly enhance) estimations of the relative contribution of individuals from each
breeding subpopulation to the to the mixed population of (age-0) juveniles in late summer,
which is a strong predictor of future population size at the time individuals recruit to the fish-
ery at age-2 [34–35]. In so doing, we use a range of hatch-location assignment thresholds to
test the sensitivity of both natural tagging approaches.

Materials and Methods

Study species and system
Lake Erie (USA-Canada) is a part of the Laurentian Great Lakes system, and is warmer, shal-
lower (mean depth of western basin = 7.4 m), and more productive than the other Great Lakes
[36]. The western basin is a hydrodynamically active system, characterized by inflows from the
Detroit and Maumee Rivers [37], large-scale circulation primarily driven by the Detroit River
inflow and basin-wide winds [33], and the formation of a turbid river plume driven by the
Maumee River inflow [27].

The yellow perch population in Lake Erie’s western basin contributes to economically im-
portant recreational and commercial fisheries [35] and appears to be supported by multiple
discrete local breeding subpopulations [18, 27, 38–39]. Yellow perch larvae hatch at*5 mm
total length (TL), are provided no parental care, and spend 30–35 d in the water column feed-
ing on zooplankton before becoming demersal as juveniles at 20–25 mm total length (TL) [34,
40–41]. While the mixing of western basin north-shore and south-shore breeding subpopula-
tions (i.e., potential stocks) is known to occur during the juvenile stage [27, 42], mixing of lar-
vae has not been investigated. However, because yellow perch larvae are weak swimmers until
*9.5 mm TL [43], we suspect that mixing of breeding subpopulations occurs during the larval
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stage, owing to the observed mixing of the Detroit River (north shore) and Maumee River
(south shore) water masses during the larval production period [37, 44].

Field collections
Larval yellow perch were collected weekly during late April through June 2006 and 2007 at up
to 12 sites near the north shore (NS) and south shore (SS) of Lake Erie’s western basin (Fig. 1A,
see also [27]). For the purpose of this study, a line at latitude 41.81° N (approximately the
northernmost extent of the Maumee River plume) was used to divide the NS and SS spawning
grounds. All larvae were collected with paired bongo nets (1 m diameter; 500 μmmesh and
one with 1000 μmmesh) towed*2 m from the bottom of the lake to the surface (*8 min
tows). All larvae were euthanized with a lethal dose of tricaine methanesulfonate, then pre-
served in 100% ethanol until identification and processing. In total, 242 larvae were captured
during 2006 (n = 151 in NS; n = 91 in SS) and a total of 364 larvae were captured during 2007
(n = 283 in NS; n = 81 in SS).

Bottom-trawling surveys (10.7 m headrope, 13 mm cod-end liner, 3 km h−1 tow speed) for
juvenile (age-0) yellow perch were conducted by the Ohio Department of Natural Resources-
Division of Wildlife and Ontario Ministry of Natural Resources during late August, 2006 and
2007, at 71 and 73 sites, respectively (Fig. 1B, see also [27]), with trawl-site selection based on a
stratified (by depth), random design [35]. Juveniles were euthanized with a lethal dose of tri-
caine methanesulfonate and kept frozen until processing. We processed 119 and 167 juveniles
during 2006 and 2007, respectively, with the number of individuals processed from each site
determined proportionally from trawl catch per unit effort data.

During 2007, water samples were also collected at each site from 1–2 m depth for trace-ele-
mental analysis. The samples were filtered through 0.45 μm nylon filters, acidified with nitric
acid (1% of the total volume of water; 0.5 mL acid to 20 mL water), and analyzed using
ICP-MS.

Ethics Statement
Larval and juvenile yellow perch were collected from public areas (Fig. 1) under the authority
and with the assistance of the Ohio Department of Natural Resources-Division of Wildlife
(Sandusky, OH) and the Ontario Ministry of Natural Resources (Wheatley, ON). No protected
species were sampled. All work was approved by The Ohio State University’s Institutional Ani-
mal Care and Use Committee (Protocol number 2008A0056).

Larval otolith extraction and hatch date determination
Otoliths were used to estimate the hatch date of each larva collected in each breeding area.
Briefly, both sagittal otoliths were removed from larvae with glass probes under a Class 100
clean hood, with the otolith used for aging being mounted to a glass microscope slide with
Crystalbond 509 thermoplastic cement (Structure Probe, Inc., West Chester, PA) and otolith
used in micro-elemental analysis mounted to a petrographic glass slide using double-sided
tape. All glassware were acid-washed prior to use, with all otoliths sonicated and further
cleaned in ultra-pure deionized water (see [18, 27] for more details on the processing and
cleaning process).

To determine the hatch date of each larva, we first identified the hatch check [27] and then
counted post-hatch daily rings to the longest otolith edge, using ImagePro imaging software
(Media Cybernetics, Inc., Rockville, MD) and a Nikon E200 compound microscope (100x and
50x magnification, oil immersion, Nikon Inc., Melville, NY). Otolith ages from larvae< 25 d
old were determined from a single count, as previous research conducted with Lake Erie yellow
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perch showed that single ring counts are reliable for yellow perch of less than this age [34]. For
larvae> 25 d of age, at least one additional blind count was conducted, with additional counts
being performed as needed [27]. With knowledge of the each larva’s post-hatch age and day of
collection, we could determine hatch date.

Predicting larval dispersal through hydrodynamic backtracking
Water circulation model. A hydrodynamic model was used to simulate the currents and

temperatures in Lake Erie, providing the three-dimensional physical predictions necessary for
tracking individual particles (larvae). Our model is based on the Princeton Ocean Model plat-
form [45], which solves the hydrostatic, three-dimensional primitive equations in a second-
order finite difference framework. The model used the Smagorinsky parameterization for the
horizontal diffusion (coefficient of 0.1) and the Mellor-Yamada level 2.5 turbulence closure
scheme in the vertical direction. Our model was calibrated and validated for Lake Erie using
eight National Ocean Service (NOS) water level gauges along the shoreline, current measure-
ments in each basin, and lake surface temperature in each basin [22]. It currently runs in real-
time as part of the NOAAGreat Lakes Coastal Forecasting System (GLCFS; [46]), where hourly
observations of wind speed/direction, cloud cover, air temperature, and dew point temperature
are used to compute three-dimensional currents, temperature, water level, and waves on a 2
km resolution unstructured grid (21 vertical sigma levels).

Particle backtracking. Hourly output from the real-time GLCFS was used to drive a La-
grangian particle transport model to simulate passive trajectories of individual larva in western
Lake Erie. The latitude and longitude where each larva was collected (see above) and its post-
hatch age from otolith ring counts [27] were used to set the particle-tracking model’s initial pa-
rameters. The particle-tracking model used a 2nd-order Lagrangian scheme [47] to simulate
passive, neutrally-buoyant particle movement in three dimensions. We assumed the larvae to
be passive, neutrally-buoyant particles based on their small size, weak swimming ability, and
positive photacticity [40, 43]. The Smagorinksy parameterization was used for horizontal diffu-
sion (coefficient of 0.005), based on previous calibrations [44], and a random-walk approach
was used for vertical diffusion (0.0005 m2 s−1).

In each simulation, a group of particles (n = 5,000) was initiated at the capture location of
each larva and spread over a 5 m radius; the pathways taken by these particles were used to cre-
ate a probability distribution for the pre-capture dispersal path of the larva captured at that lo-
cation. Water-current uncertainties and variability were accounted for by the calibrated
diffusion coefficients/schemes, as described above, as well as the defined particle patch. Simula-
tions were performed backward in time, starting at the time of capture and proceeding back to
the estimated hatching day. Daily location and temperature were recorded for each particle, de-
lineating the backtracked pathway from capture to hatch location for each larva. In addition, a
grid-based probability of daily larva location was computed for each modeled grid cell by ac-
counting for the percentage of 5,000 particles present within the cell at any given time. In this
sense, the spatial distribution of a larva’s location and the point of highest probability could be
determined for each day (S1 Appendix).

With knowledge of the probability that a larva was in any given cell on any given day since
hatching, we determined the most likely hatching location (NS or SS) by summing the proba-
bilities of potential hatch cells in each location (e.g., NS probabilities were summed for cells

Fig 1. Larval (a) and juvenile (b) yellow perch collection sites during 2006 and 2007 in western Lake
Erie. The dotted horizontal line in (a) marks the boundary between the north shore (NS) and south shore
(SS).

doi:10.1371/journal.pone.0120752.g001
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above 41.81° N). Doing so allowed us to test how certainty in hatch location (60, 70, 80, and
90% certainty thresholds) could influence subpopulation discrimination abilities and juvenile
classifications (using methods describe below). Output from these analyses also were compared
to the “Best Estimate”, which used the single most probable hatch cell to assign larvae to the
NS or SS without consideration of a certainty threshold.

Breeding subpopulation discrimination and juvenile classification
For both the genetics and otolith microchemistry described below, we first conducted all analy-
ses without using backtracking (i.e., we assumed larvae originated in their capture location).
These initial larval assignments served as our null condition. We then repeated all analyses,
using backtracking predictions to revise initial larval hatching locations where appropriate (per
above). For genetic analyses, we first used larvae of all size classes in analyses. Afterwards, we
repeated all analyses with a subset of larvae that only included individuals< 8 mm TL, which
are likely to be primarily passively dispersed [43, 48]. We also only included herein loci in
Hardy-Weinberg equilibrium (7 of the 12 loci, see below), with analyses that used data from all
12 loci being found in S4 Appendix. For otolith microchemical analyses, we included all larvae
in analyses due to smaller initial sample sizes.

Microsatellite extraction and genotyping. DNA was recovered from tissue samples using
a plate-based extraction method [49]. Extracted larval DNA samples were re-suspended in
50 μL of Tris–EDTA buffer (10 mM Tris, 1.0 mM EDTA, pH 8.0), whereas juvenile DNA was
re-suspended in 100 μL of the same buffer.

Each individual was genotyped at a total of 12 microsatellite loci [50]. PCR amplification
was performed in 25 μL reactions with the following components: 1.5 μL of template DNA;
2.5 μL 10x PCR buffer; 2.5 μL of MgCl2 (25 mM); 0.3 μL of dNTPs (50 μM of each); 0.2 μL
(0.5 μM) of dye-labeled primer; 0.2 μL (0.5 μM) of the reverse primer; and 0.10 U Taq polymer-
ase (Applied Biosystems, Foster City, CA). PCR conditions were as follows: initial denaturation
at 94°C for 2 min, followed by 35 to 40 cycles of denaturing at 94°C for 15 s; annealing at vari-
ous temperatures for 30 s (following [50]); extension at 72°C for 30 s; and a final extension of
72°C for 10 min. Microsatellite allele sizes were determined using a LI-COR 4300 DNA analyz-
er (Lincoln, NE) and scored using GeneImage IR 4.05 (Scanalytics Inc., Rockville, MD).

Larval population genetic structure. First, Fisher’s exact tests for Hardy-Weinberg Equi-
librium (HWE) were performed using Arlequin (v3.5.1.2; [51]). The α-level of each test was ad-
justed by dividing by the number of tests conducted (i.e., 12 tests, one per locus). Loci were
considered unreliable and removed from subsequent analyses, if consistent violations of HWE
occurred at the same locus across both subpopulations or within a subpopulation during both
years. Second, tests for linkage disequilibrium were run for all pairs of loci in all larval groups
(and age-0 juveniles) using Genepop (version 4.0.7; [52]). Third, FST estimates were calculated
to assess genetic differentiation within a year between NS and SS subpopulations using Gene-
pop (version 4.0.7, [52]; following [53]). Lastly, we used discriminant analysis of principal com-
ponents (DAPC) in the R package ‘adegenet’ (version 1.3–9.2; [54–55]) to explore genetic
structure (spatial data based on capture or hatch location was not included in our analysis).
DAPC first transforms the data using principal components analysis, then uses k-means clus-
tering to define clusters that maximize the variation among groups (based on the lowest Bayes-
ian Information Criterion).

In describing larval population genetic structure, we were not concerned with identifying
population substructure per se. Instead, we sought to identify whether at least a minimal level
of structure existed, and then using this weak structure to develop assignment and discrimina-
tion functions. Previous studies have demonstrated that the most common assignment tests
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are robust to low differentiation among subpopulations (e.g., low FST) and violations of as-
sumptions (e.g., HWE; [56–57]).

Larval self-assignment with microsatellites. We used GENECLASS 2.0 [58] to conduct a
rank-based self-assignment genotype test during both years [59] that was based on microsatel-
lite information from larvae from both subpopulations. It uses a bootstrapping approach
wherein each individual larva is removed from the analysis (one at a time) and subsequently
treated as an “unknown” larva that is then assigned to NS or SS subpopulations, based on the
genetics of all other individuals [59]. By determining the percent of larvae successfully assigned
back to their NS or SS collection location (i.e., null larval assignment, no backtracking) or
hatch site (i.e., after backtracking revision), as well as by exploring posterior probabilities of
assignment for each individual, reliability in assignments for each subpopulation could be
assessed.

Juvenile classification with microsatellites. Microsatellite information from both larvae
and juveniles was used to quantify both breeding subpopulation’s relative contribution of juve-
nile recruits to the mixed population during both years. To do so, we used GENECLASS 2.0 to
assign each unknown-origin juvenile to either the NS or SS breeding subpopulation. These de-
terminations were made using the null larval assignments (i.e., not revising larval hatch loca-
tions using backtracking) and revised larval assignments (i.e., accounting for pre-capture
dispersal using backtracking). Our analysis consisted of a two-step procedure [60]. First, we
performed a Bayesian assignment [61] with Monte Carlo re-sampling using Paetkau et al.’s
[62] simulation algorithm (10,000 simulated individuals at an assignment threshold of
P = 0.05). The Bayesian analysis allowed us to exclude unknown-origin juveniles with less than
a 30% of belonging to either one of our focal breeding subpopulations (NS or SS), as the poten-
tial for contributions from other local breeding subpopulations exists in Lake Erie [18]. Second,
we classified remaining juveniles to the NS or SS, using a rank-based genotype assignment (fre-
quency method; [59]). In so doing, we considered successful ranked-based assignments to be
those with probability of 70% or higher of belonging to one of the two breeding subpopulations
(hence, the second group assignment probability would be 30% or lower). Failed assignments
(i.e., unknown origin) were those with likelihood between 30% and 70%.

Otolith microchemistry. We used laser ablation-inductively coupled plasma-mass spec-
trometry (LA-ICP-MS) to quantify trace-metal concentrations in each otolith not used for
hatch date determination. An ICP-MS (model X7, Thermo Elemental, Franklin, MA) with a
Continuum Surelite I solid-state ND-YAG laser (wavelength = 266 nm, maximum power =
20 mJ, pulse rate = 20 Hz, pulse rate = 4–6 ns) was used to measure isotopic masses, which
then were used to determine lithium (Li), magnesium (Mg), manganese (Mn), zinc (Zn), stron-
tium (Sr), barium (Ba), and lead (Pb) concentrations (see [18, 27] for more details). Calcium
(Ca) was used as an internal standard, to correct for ablation-yield differences, and the occur-
rence of mass 120 (measured as 120Sn, tin isotope) in samples was used as a contamination in-
dicator [18]. A glass standard (NIST 610) was analyzed twice before and after every 16 samples
to correct for drift and estimate the precision (coefficient of variation) of the instrument be-
tween runs. The argon carrier gas was analyzed for 60 s before every sample to determine in-
strument background levels and to estimate the limits of detection (LOD) of every sample. For
larvae, ablated transects spanned from the outer edge of the otolith, through the core, and to
the opposite outer edge. We integrated the entire otolith except for 5–10 s at the outer edge to
avoid tape contamination. For juveniles, we ablated the portion of the otolith that captured the
larval period based on the mean otolith radius length of 28 d old larvae caught from two breed-
ing locations. We integrated and analyzed this larval portion before, through, and after the core
[27]. Transect data were integrated using ICP-MS PlasmaLab software (Thermo Electron, Wal-
tham, MA) to quantify mean elemental concentrations.

Particle Backtracking in Mixed Populations

PLOS ONE | DOI:10.1371/journal.pone.0120752 March 23, 2015 8 / 24



To be included in final analyses, concentrations had to be above the LOD for 90% of the
samples within a breeding area and the glass standard coefficient of variation had to
be< 10.5% [18]. For 2006 and 2007, Sr and Ba met our LOD criteria. Elements that were sig-
nificantly related to otolith radius based on the results of an analysis of covariance (ANCOVA)
were detrended to remove the effect of fish size using the slope of the relationship between the
elemental concentration and the otolith radius [18, 31].

Larval self-assignment and juvenile classification usingotolith microchemistry. We
used linear discriminant function analysis (LDA), quadratic discriminant function analysis
(QDA), random forest analysis (RF), and neural network analysis (NN) in R [63] to test for
self-assignment consistency within each year. The LDA and QDA analyses used jackknife pro-
cedures to classify larvae. RF and NN use machine-learning algorithms. Based on the near-
identical results across all methods for larval self-assignment, we used only LDA in R to quanti-
fy the contribution of both breeding subpopulations to the mixed population of unknown-ori-
gin juvenile recruits within each year [64]. We used similar cutoffs as with the genetic
assignments to assign juveniles (i.e., likelihoods> 70% were successfully assigned to a subpop-
ulation, whereas likelihoods< 70% were considered to be failed assignments). For both the lar-
val self-assignment tests and the juvenile assignments, used the same null larval capture-
location assignments (no backtracking) and backtracking-revised hatching-location assign-
ments as in the microsatellite analyses.

Results

Hatch location determination using backtracking
Backtracking data from both years led us to revise the initial assignment of numerous larvae,
mostly shifting the larval hatching location from the SS to the NS (S1 Appendix). During 2006,
151 of 242 larvae (62%) were captured in the NS, with the remaining 91 larvae collected in the
SS. Reenactment of pre-capture dispersal pathways by backtracking, however, suggested that
the hatching location of> 50 larvae should have been the NS instead of the SS (Best Assign-
ment, using all larvae: 84% NS). Including the< 8 mm TL cutoff and more stringent certainty
criteria regarding the confidence in our backtracked hatch locations further increased the per-
centage of larvae predicted to have hatched in the NS, but also simultaneously reduced the
number of individuals included in subsequent analyses (no backtracking: 64% NS, total
n = 190; Best assignment: 88% NS, n = 165; 60% certainty: 87% NS, n = 165; 70% certainty:
88% NS, n = 163; 80% certainty: 89% NS, n = 160; 90% certainty: 91% NS, n = 149). During
2007, 283 of 364 larvae (78%) were captured in the NS, with the remaining 81 larvae collected
in the SS. Consideration of backtracked dispersal pathways prior to capture again shifted the
initial assignment of hatch location more strongly toward larvae originating from the NS (Best
assignment including all larvae: 88% NS). Including the< 8 mm TL cutoff and increasing our
level of confidence in the backtracking data again increased the percentage of larvae predicted
to have originated in the NS and reduced the number of larvae that could be used to build func-
tions to assign juveniles (no backtracking: 84% NS, total n = 247; Best assignment: 91% NS,
n = 242; 60% certainty: 91% NS, n = 240; 70% certainty: 91% NS, n = 240; 80% certainty: 93%
NS, n = 236; 90% certainty: 98% NS, n = 224).

Larval population genetic structure
For larvae captured during 2006, two of the NS loci and five of the SS loci (out of 12 for each
subpopulation) deviated significantly from HWE. One locus deviated significantly from HWE
across both subpopulations during 2006 (Table 1). During 2007, 6 of the 12 NS loci and 5 of
the 12 SS loci significantly deviated from HWE in larvae from both the NS and SS. Five loci
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deviated significantly from HWE across both subpopulations during 2007 (Table 1). Because 5
of 12 loci (loci YP78, YP96, YP60, YP65, and YP49) significantly deviated from HWE in either
both years within a subpopulation or in both subpopulations within a year, we removed these
loci from subsequent analyses, unless noted otherwise. No evidence of linkage disequilibrium
was found in either year. See S2 Appendix for genetic diversity indices based on larvae< 8 mm
TL and including only the seven loci in HWE.

Pairwise FST values, based only on the seven loci, indicated only weak genetic differentiation
between the NS and SS subpopulations during 2006 and 2007 (Table 2). Using backtracking in-
formation to improve the certainty of the larval hatch location caused a*3-fold (Best; i.e.,>
50% certainty in hatching location) to> 5-fold (90% certainty in hatching location) increase in
the FST value (relative to the null condition; i.e., no backtracking) during 2006, although a simi-
lar increase was not evident during 2007 (Table 2). Conducting the same analyses with only
larvae< 8 mm TL (i.e., those most likely to drift passively) caused FST values to generally in-
crease during both years relative to when all larvae were included in the analysis. Further, in-
creasing confidence in the hatching location of larvae (those< 8 mm TL) with backtracking
generally led to a 3-fold to 4-fold increase in the FST value over the null condition (Table 2).

DAPC also provided evidence for genetic differentiation, using seven microsatellite loci.
Near equal support for two to five genetic clusters was found during 2006 using the full set of
larvae (S3 Appendix). Using only larvae that were< 8 mm TL and met the 90% hatch-location
certainty criterion gave similar results (S3 Appendix). For the full set of 2007 larvae, DAPC
found the strongest support for four clusters, with three to seven clusters similarly supported
(S3 Appendix). Using only 2007 larvae that were< 8 mm TL and with a 90% hatch location
certainty gave similar results (S3 Appendix). Because our interest was in discriminating

Table 1. Number of genotypes (N), alleles (NA), and observed (HO) and expected (HE) heterozygosity for the 12microsatellite loci (Li et al. 2007)
used to genotype larval yellow perch (YP) collected in north-shore (NS) and south-shore (SS) waters of Lake Erie’s western basin during 2006
(NNS larvae = 151, NSS larvae = 91) and 2007 (NNS larvae = 283, NNS larvae = 81).

Locus

Groups YP85 YP78 YP41 YP109 YP55 YP110 YP96 YP60 YP65 YP49 YP81 YP99

NS06 N 137 140 141 116 123 129 133 140 147 142 135 125

NA 17 13 6 24 9 9 10 6 13 10 6 13

HO 0.79 0.89 0.67 0.82 0.56 0.12 0.67 0.54 0.64 0.77 0.67 0.86

HE 0.84 0.84 0.58 0.93 0.50 0.12 0.50 0.44 0.57 0.65 0.54 0.86

SS06 N 76 78 87 57 82 74 84 79 79 83 76 74

NA 16 11 8 20 7 5 6 9 11 7 16 12

HO 0.61 0.73 0.69 0.79 0.57 0.11 0.60 0.65 0.61 0.75 0.51 0.76

HE 0.81 0.84 0.58 0.94 0.53 0.15 0.51 0.55 0.60 0.62 0.73 0.85

NS07 N 267 278 269 271 280 260 282 269 266 274 272 272

NA 22 15 7 30 7 9 13 9 10 12 6 15

HO 0.75 0.89 0.64 0.80 0.61 0.12 0.74 0.69 0.82 0.97 0.60 0.87

HE 0.78 0.85 0.60 0.94 0.53 0.12 0.58 0.54 0.62 0.67 0.59 0.86

SS07 N 61 78 81 65 80 77 79 66 76 67 74 68

NA 18 12 6 22 6 7 6 6 8 6 5 12

HO 0.92 0.99 0.60 0.97 0.68 0.10 0.72 0.82 0.79 0.87 0.64 0.93

HE 0.87 0.84 0.57 0.94 0.55 0.13 0.51 0.58 0.58 0.64 0.55 0.84

Groups are denoted by collection location (NS, SS) followed by the year of collection (06, 07). Note: Data in bold denotes deviations from HWE (following

Bonferroni correction).

doi:10.1371/journal.pone.0120752.t001
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between subpopulations from the SS and NS for this application, we plotted two clusters for
each dataset against the first discriminant function to illustrate the improved consistency of
each cluster after using the backtracking procedure to revise initial group membership (i.e., we
compared cluster assignments of all larvae to assignments of larvae for which hatch location
was most certain; S3 Appendix).

Larval self-assignment accuracy (microsatellites)
Using backtracking to correct for pre-capture dispersal and only using small (< 8 mm TL) lar-
vae that are likely to drift passively improved larval self-assignment accuracy. During 2006,
self-assignment success of larvae increased from*73% without backtracking (i.e., initial
hatching-location assignment based on larval capture location) to 85% to 90% with consider-
ation of backtracking at all levels of larval hatching-location certainty when no size cutoff was
used (Fig. 2A, black bars). Implementing the 8 mm TL size cutoff tended to increase larval as-
signment success by a small percentage, with>90% self-assignment success being achieved
when the most stringent (90%) backtracking certainty was used (Fig. 2A, white bars). During
2007 (Fig. 2B), the pattern was similar, although backtracking offered more modest gains
(< 12%) in assignment success (from*65% success to*78% success). However, when the
8 mm TL size cutoff was implemented, leaving only larvae that are likely to drift passively [43],
self-assignment accuracy rose to>80% for most of the lower levels of certainty in larval hatch-
ing location, but increased to 97% when the 90% certainty criterion in backtracked hatching lo-
cation was implemented (Fig. 2B).

Table 2. FST values between larvae collected in north-shore (NS) and south-shore (SS) waters of west-
ern Lake Erie during 2006 and 2007 based on sevenmicrosatellite loci, with all larvae included (top)
and only larvae< 8mm total length included (i.e., those most likely to be passively dispersed;
bottom).

2006 2007
n, FST n, FST

None 242, 0.0083 364, 0.0016

Best 213, 0.024 355, 0.0017

60% 211, 0.028 347, 0.0018

70% 205, 0.035 340, 0.0020

80% 197, 0.038 332, 0.015

90% 186, 0.044 316, 0.022

None & < 8 mm 190, 0.010 247, 0.0016

Best & < 8 mm 165, 0.039 242, 0.0051

60% & < 8 mm 165, 0.038 240, 0.0049

70% & < 8 mm 163, 0.041 240, 0.0049

80% & < 8 mm 160, 0.042 236, 0.0010

90% & < 8 mm 149, 0.045 224, 0.027

Sample sizes (n) are included. Rows indicate confidence in hatch-location assignment: None: null

assignments based on capture location; Best: assigned to single most likely hatching location (SS or NS)

based on backtracking; 60%: assigned to hatching location with at least 60% confidence; 70%: assigned to

hatching location with at least 70% confidence; 80%: assigned to hatching location with at least 80%

confidence; 90%: assigned to hatching location with at least 90% confidence.

doi:10.1371/journal.pone.0120752.t002

Particle Backtracking in Mixed Populations

PLOS ONE | DOI:10.1371/journal.pone.0120752 March 23, 2015 11 / 24



Classification of unknown-origin juveniles (microsatellites)
Improved classification accuracies resulting from consideration of corrected larval hatching lo-
cations (via backtracking) and implementation of an 8 mm TL size cutoff (see Fig. 2) both im-
proved our ability to determine the origins of juvenile recruits captured in a mixed population
during August 2006 and 2007 and altered each breeding subpopulation’s predicted contribu-
tion to it. Some individuals (0% to 20%, depending on the analysis) likely did not emanate
from either of our breeding populations, and therefore were excluded from analysis (Fig. 3).
However, of those that were viable for classification, the percentage of failed assignments de-
creased by*2-fold with consideration of both backtracking and the 8 mm TL cutoff during
both years, with the reduction in failed assignments being far greater when the 90% certainty

Fig 2. Self-assignment results based onmicrosatellite DNA data (seven loci) for larval yellow perch collected in Lake Erie’s western basin during
a) 2006 and b) 2007. For sample sizes, see Table 2. Confidence in hatching locations is as follows: None = null assignments based on capture location (i.e.,
no backtracking used); Best = larvae assigned to single most likely hatching location (SS or NS) based on backtracking; and 60, 70, 80, 90 = larvae assigned
to hatching location after backtracking revision with 60, 70, 80, 90% levels of certainty in hatching origin, respectively.

doi:10.1371/journal.pone.0120752.g002
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level in backtracked hatch location was used (Fig. 3). In addition, during both years, the per-
centage of juveniles classified to NS tended increased, with the percentage assigned to the SS
concomitantly decreasing. During 2006, the percentage of juveniles predicted to emanate in
the NS increased by*20% to*30% with consideration of backtracked hatching location,
whereas the increase on the order of*10% during 2007.

Larval self-assignment accuracy (otolith microchemistry)
Mean otolith Sr concentrations in larvae differed strongly between the NS and SS breeding sub-
populations during both years (2006: SS: 847±216 μg g−1, NS: 443±55 μg g−1; 2007: SS: 843±
239 μg g−1, NS: 554±103 μg g−1), which reflected differences in water chemistry (Sr:Ca ratios)
between breeding locations (2006: SS: 0.0021, NS: 0.0011; 2007: SS: 0.0021, NS: 0.0014). Mean
Ba concentrations in both larval yellow perch otoliths and the ambient water also differed be-
tween breeding locations during both years (2006: SS: 30±24 μg g−1; NS: 99±37 μg g−1; 2007:
SS: 50±26 μg g−1; NS: 125±213 μg g−1; Ba:Ca ratios: 2006: SS: 0.000075; NS: 0.00025; 2007: SS:
0.00012; NS: 0.00031 Ba:Ca). During 2007, however, Ba exhibited a significant interaction be-
tween subpopulation and otolith radius (F1,111 = 30.25, P< 0.001) and could not used for dis-
crimination. Because otolith size was significantly related to Sr concentrations in both years
and Ba in 2006 (2006 Ba: F1,36 = 16.24, P< 0.001; 2006 Sr: F1,36 = 128.14, P< 0.001; 2007 Sr:
F1,111 = 128.14, P< 0.001), we detrended the data using slope estimates of −0.340 (2006 Ba),
−0.00134 (2006 Sr), and −0.00161 (2007 Sr).

Self-assignment accuracy of larvae, based otolith micro-elemental concentrations, was high
during both years, with the value of backtracking differing between years. Owing to otolith Sr
being a near-perfect discriminator in 2006, larval self-assignment success across all multivariate

Fig 3. Predicted origins of juvenile yellow perch collected in open waters of western Lake Erie usingmicrosatellites (seven loci) from larvae
collected during 2006 (a: all larvae; b: only larvae< 8mm total length, TL) and 2007 (c: all larvae; d: only larvae< 8 mm TL). A total of N = 119 and
N = 167 juveniles were analyzed during 2006 and 2007. Juveniles with< 30% likelihood of originating within a population were “excluded” (i.e., they were not
included in the analysis); juveniles with a 30 to 70% likelihood were considered “failed,” (i.e., we had little confidence in their hatching-location assignment);
and juveniles with a probability> 70%were assigned to the NS or SS breeding population with high confidence. Certainty in hatching locations of larvae used
to develop classification functions was as follows: None = null assignments based on capture location (i.e., no backtracking used); Best = larvae assigned to
single most likely hatching location (SS or NS) based on backtracking; and 60, 70, 80, 90 = larvae assigned to hatching location after backtracking revision
with 60, 70, 80, 90% levels of certainty in hatching origin, respectively.

doi:10.1371/journal.pone.0120752.g003
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tests was high (> 98%) even without consideration of backtracking, and remained similarly
high with each backtracking scenario (Fig. 4A). During 2007, assignment success across all
multivariate tests was slightly lower (83–87%) without consideration of backtracking results,
but increased to> 95% (up to 98%) with the most stringent backtracking criterion (90% cer-
tainly in larval hatch location, Fig. 4B).

Classification of unknown-origin juveniles (otolith microchemistry)
Similar to the assignments of juveniles based on microsatellite information (see Fig. 3), back-
tracking showed potential to improve the use of otolith microchemistry for identifying the
hatching locations of juvenile recruits. While backtracking did not reduce the percentage of
failed assignments (i.e.,< 70% classification accuracy) during 2006 (Fig. 5A), the percentage of

Fig 4. Larval yellow perch self-assignment results using a Random Forest (RF), Linear Discriminant Function Analysis (LDA), Quadratic
Discriminant Function Analysis (QDA), and Neural Network (NN) based on otolith microchemistry data for a) 2006 and b) 2007. A total of N = 47 and
N = 71 larvae were analyzed in 2006 and 2007. Confidence in hatching locations is as follows: None = null assignments based on capture location (i.e., no
backtracking used); Best = larvae assigned to single most likely hatching location (SS or NS) based on backtracking; and 60, 70, 80, 90 = larvae assigned to
hatching location after backtracking revision with 60, 70, 80, 90% levels of certainty in hatching origin, respectively.

doi:10.1371/journal.pone.0120752.g004
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failed assignments declined from* 25% to< 5% during 2007 (Fig. 5B). In addition, consider-
ation of backtracked hatch locations of larvae used to develop classification functions altered
the relative contributions of juveniles from both subpopulations during both years. The pro-
portion of the total fish assigned to the NS increased in both years relative to the null (no back-
tracking) scenario. During 2006, this increase was>50% for the Best and 90% backtracking-
certainty scenarios (Fig. 5A). This increase in individuals assigned to NS corresponded to a de-
crease in those assigned to SS. During 2007, the percentage of juveniles predicted to originate
in the NS doubled with consideration of backtracking (from*20% without it to*40% with
it; Fig. 5B). However, during 2007, the percentage of the total fish assigned to SS remained fair-
ly constant (*45%). Rather, during 2007, the increase in individuals assigned to the NS corre-
sponded to a decrease in the percentage of failed assignments (from*25% to< 5%; Fig. 5B).

Fig 5. Predicted origins of juvenile yellow perch collected in open waters of western Lake Erie using otolith microchemistry from larvae collected
in north-shore (NS) and south-shore (SS) water during a) 2006 and b) 2007. A total of N = 98 juveniles were analyzed each year. Juveniles with< 70%
likelihood of originating within a population were consider “failed” and juveniles with a probability> 70%were assigned to NS or SS. Certainty in hatching
locations of larvae used to develop classification functions was as follows: None = null assignments based on capture location (i.e., no backtracking used);
Best = larvae assigned to single most likely hatching location (SS or NS) based on backtracking; and 60, 70, 80, 90 = larvae assigned to hatching location
after backtracking revision with 60, 70, 80, 90% levels of certainty in hatching origin, respectively.

doi:10.1371/journal.pone.0120752.g005
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Discussion
Our results demonstrate that the use of particle backtracking approaches that account for dis-
persal history prior to collection can improve the ability of natural tagging approaches to dis-
criminate among breeding subpopulations (i.e., potential stocks). In addition, the general
backtracking approach used herein is valuable in that it allows for detection and characteriza-
tion of population structure despite physical mixing of individuals at a young age (e.g., in the
case of western Lake Erie, transport of larvae from one hatching location to another by strong
river- and wind-driven currents), which none of the classical population genetics methods can
do without an unmixed control sample to train the analysis to identify strays. For both natural
tagging approaches used herein (i.e., microsatellites and otolith micro-elemental composition),
revision of larval hatch locations via particle backtracking simulations improved our ability to
develop reliable classification functions breeding subpopulation discrimination. In our exam-
ple, the use of backtracking improved the accuracy of assignment of larval yellow perch to their
proper breeding subpopulation in western Lake Erie (NS or SS) by as much as 43% over the
null condition (i.e., use of larval capture location without backtracking; Table 3). In addition,
larval self-assignment accuracies tended to increase with increasing confidence in the back-
tracked pre-capture dispersal trajectories. Using backtracking to correct the hatch locations of
larvae used to develop classification functions also generally caused FST values measured be-
tween breeding subpopulations to increase, suggesting that this method could assist efforts to
quantify genetic structure in weakly differentiated stocks. An improved ability to discriminate
between breeding subpopulations (using genetics or otolith microchemistry) would, in turn, be
expected to benefit efforts to correctly identify the source origin of older individuals found in a
mixed population. In our western Lake Erie application, the use of backtracking to revise some
of the larval hatch locations caused the percentage of failed juvenile recruit classifications to de-
crease by half or greater (relative to the null, no-backtracking scenario; Table 3) and also caused
us to revise the relative subpopulation contribution of juvenile recruits from the NS versus SS.
The increase in the contribution of juvenile recruits from the NS with consideration of back-
tracking was as much as 45% of the total number of individuals (a 4x increase over initial

Table 3. Summary of the percentage of individuals correctly self-assigned (larvae) or successfully classified to a natal group (juveniles) without
and with backtracking revision of initial larval assignments.

Microsatellite data No backtracking Backtracking

Larval assignment

2006 80% 94%

2007 69% 97%

Juvenile classification

2006 79% 90%

2007 66% 78%

Otolith microchemistry

Larval assignment (LDA)

2006 96% 98%

2007 83% 99%

Juvenile classification

2006 82% 77%

2007 71% 92%

The backtracking column includes only the data using the 90% confidence threshold for larval hatching location assignment. The data also include only

larvae < 8 mm TL.

doi:10.1371/journal.pone.0120752.t003
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estimated contributions from this subpopulation when backtracking was not used). As we ex-
plain below, changes as substantial might not only lead to a new understanding of population
structuring and dynamics in an ecosystem, but also simultaneously benefit conservation or
management efforts.

Application of particle backtracking to Lake Erie yellow perch
Specific to western Lake Erie yellow perch, contributions of juvenile recruits from the NS and
SS regions have been previously documented in western Lake Erie using genetics [42] and oto-
lith microchemistry [27], respectively. However, like many studies conducted in other aquatic
ecosystems, these studies did not account for potential dispersal prior to larvae being collected
for development of discrimination functions. Our consideration of passive dispersal during the
larval stage (using backtracking) suggests that the NS subpopulation contributes more larvae
and juvenile recruits to the open-lake population than has been previously reported (e.g., [42]
as inclusion of backtracking increased the contribution of juvenile recruits from the NS by up
to 60% and 108% during 2006 and 2007, respectively. Though direct comparisons to [27]
would not be appropriate because that investigation compared relative recruitment rates of lar-
vae residing inside versus outside of an open-lake river plume (Maumee River) that is generally
only found in the SS of western Lake Erie and focused on larval habitat use rather than natal or-
igin, our findings do suggest that a large proportion of the individuals that used this river
plume as nursery habitat during the larval stage actually originated in the NS (49% and 47% of
the larvae captured in 2006 and 2007, respectively). We suspect that many of these larvae were
passively advected by strong Detroit River water currents from the NS into the SS prior to cap-
ture for discrimination purposes (the mean travel time is less than 21 hours; [65]), most likely
at an early age when they are expected to have weak swimming abilities [43].

Recognition of the heightened importance of the NS to juvenile recruit production most cer-
tainly would be of interest to Lake Erie researchers and fisheries management agencies. Ecolo-
gists, for example, might be interested in learning more about the mechanisms that allow for
maintenance of this weak genetic differentiation. While such a discussion is beyond the scope
of this study, natal homing behavior and kin recognition/selective mating provide two reason-
able hypotheses [66–67]. By contrast, Lake Erie agencies might wonder whether the NS larvae
and subsequent juvenile recruits are originating from outside of Lake Erie proper, given that
the current management plan for Lake Erie yellow perch does not consider the Detroit
River – Lake St. Clair corridor as a contributing subpopulation [35]. The possibility certainly
exists that the majority of NS larvae are produced outside of Lake Erie proper, which would
have a profound effect on predictions of Lake Erie agency-derived yellow perch population size
that in part depends on recruitment being dictated by in-lake spawning stock biomass [35].
Further, research conducted with Pacific salmonines has demonstrated that maintenance of a
diverse “portfolio” of breeding subpopulations (i.e., stock diversity) can be critical to ensuring
population viability during changing ecosystem conditions [68]. Given that Lake Erie has expe-
rienced large-scale ecosystem change during recent decades, owing to such factors as altered
nutrient inputs [69, 70], invasive species [71], and climate change [72–73], we recommend in-
vestigations that use a backtracking approach in combination with one or more natural tagging
approaches to determine whether larvae collected in the Detroit River – Lake St. Clair corridor
can be discriminated from NS and SS larvae. If discrimination is possible, quantification of
whether this outside source contributes recruits to the juvenile population, which is a strong
predictor of future recruitment to the fishery at age-2 [35], seems a logical next step.
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Application of particle backtracking to other populations
Lake Erie yellow perch have life-history characteristics that are similar to many other freshwa-
ter and marine organisms. Such traits include the production of small propagules (i.e., eggs, lar-
vae) that are subject to passive dispersal – for at least a period of time—by physical forces such
as water circulation [74]. For this reason, hydrodynamic models have been used extensively to
describe the dispersal trajectories of eggs and/or larvae in other fish populations, both freshwa-
ter [75] and marine [76], as well as aquatic invertebrates, including mollusks [77], crustaceans
[78], and corals [79]. While this modeling historically has consisted of forecasting the post-
spawning dispersal trajectories of eggs or larvae, efforts to hindcast dispersal histories of eggs
or larvae prior to capture from a known collection (sampling) location have increased in recent
years [21, 80].

Although our discussion thus far has focused primarily on aquatic organisms, we see great
potential for our combined backtracking-natural tagging approach to also benefit our under-
standing of and the management of the dynamics of terrestrial organisms. Because many ter-
restrial plant and invertebrate animal species also have life stages that are vulnerable to passive
dispersal by physical processes such as wind, atmospheric models have been used in a similar
way as water circulation models to describe dispersal trajectories of a variety of terrestrial or-
ganisms. Admittedly, the bulk of this research has been conducted with terrestrial plants [81];
however, the application to understanding the dispersal dynamics of both invertebrate animals
[10, 81–82] and microorganisms [83] is readily apparent. For example, Guichard et al. [11]
used atmospheric models to hindcast moth dispersal patterns.

Relatedly, our backtracking approach also can help to identify which discrimination ap-
proaches are likely to be most useful in a given system. If backtracking results, for example, in-
dicate that individuals from different, breeding (source) populations have been mixed for a
significant amount of time prior to capture such that they had experienced similar natal or
post-hatching environments, discrimination based on tools that depend on these environmen-
tal differences (e.g., otolith microchemical approaches that rely on differences in elemental or
isotopic composition; approaches that use parasites or contaminants as discriminators) may
need to be complemented or substituted with other approaches that do not depend on environ-
mental differences among breeding locations (e.g., genetic approaches).

Backtracking approaches: caveats and research needs
While our analyses conducted with Lake Erie yellow perch highlight the value of using a back-
tracking model to account for dispersal history in breeding-subpopulation discrimination stud-
ies, this approach is not a panacea. As we discuss below, many important assumptions must be
made when developing the backtracking model and the use of this technique can increase the
need for heightened sample collections.

A key decision that will need to be made is whether to include behavior (i.e., active move-
ment) in the backtracking model. In our application, we did not include any larval behavior
and assumed that larvae drifted passively. While this assumption of passive dispersal appears
valid for the sizes of yellow perch larvae used in our primary analyses (< 8 mm TL; [43]), its
validity would be expected to decline with increasing fish size as active movement behavior has
been shown to increase with ontogeny and body size, owing to in a large part a heightened abil-
ity of individuals to swim horizontally with more power [43, 84]. Thus, incorporation of active
movement behavior in predictive models of dispersal may become necessary at times. Indeed,
previous research conducted on both invertebrates [85] and fishes [30, 48, 86] has shown that
even slight active horizontal or vertical movement during the larval stage can affect dispersal
patterns. Such an effect might underlie the reduced discrimination ability between NS and SS
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yellow perch breeding subpopulations when all sizes of larvae were used in our study relative to
when only those larvae< 8 mm TL were used. Given this consideration, the use of backtrack-
ing approaches that assume passive dispersal may not be valid for some species or only during
very brief periods of time, thus requiring behavior (active movement) to be included in the
backtracking model.

A related consideration when using backtracking approaches concerns the legitimacy of the
backtracking model itself. In terms of constructing the backtracking model, many important
decisions must be made with respect on how to deal with vertical diffusion, account for turbu-
lent effects, and how stochasticity is included in the model, among many other considerations.
Such considerations can be critically important. For example, how the stochasticity due to tur-
bulence is accounted for in the backtracking model can lead to strongly differing predictions
[28]. Predicting advection in nearshore habitat where larvae may be most common can be par-
ticularly uncertain [87–88]. While much research continues to be conducted in this area, and
manuals have been developed for developing robust predictive models of particle transport in
aquatic ecosystems [29], proper calibration and validation of the physical model must be con-
ducted, if it is to provide useful data [28, 89]. Our backtracking simulations conducted during
2006 and 2007 follow known hydrodynamic phenomena in the western basin [33, 44], which
can explain the subsequent reassignment of larvae origination. Wind-driven currents in the
western basin dictate the transport of Detroit and Maumee River waters, including the extent,
flushing time, and degree of mixing. In other sysems, many quality hydrodynamic and atmo-
spheric models already have been developed for non-ecological applications, which could read-
ily be applied for ecological studies (e.g., the hydrodynamics model used here was developed
for another purpose, and adapted to model the transport of larval fish). In turn, interdisciplin-
ary collaborations between physical modelers and ecologists most certainly would save both
time and money by allowing a pairing of expertise and providing cost-effective ways to estimate
spatially and temporally explicit environmental parameters that are difficult to measure via
non-modeling methods [21].

While we showed that backtracking can improve the performance of natural tags for breed-
ing subpopulation discrimination, this benefit did not come without a cost. Specifically, we
learned that, as more stringent criteria were implemented to increase confidence in larval
hatching locations, the number of individuals included in the analyses declined. For example,
during 2006, our sample sizes used in genetic analyses declined from 68 individuals in the SS
subpopulation when backtracking was not considered to 21, 20, 19, and 8 individuals when
confidence in our backtracking estimate larval hatching locations was increased to 60%, 70%,
80%, and 90%, respectively. As a result of this tradeoff, achieving high confidence in discrimi-
nation ability may leave insufficient numbers of individuals to perform robust (powerful) as-
signments of individuals to their source origin. Indeed, previous research has demonstrated
that minimal sample sizes exist in the (training) data used to develop classification functions,
with these samples sizes varying among natural tagging techniques. For example, a minimum
of 15 individuals from each breeding subpopulation has been suggested for the use of statolith
microchemical approaches [9]. Likewise, a minimum of sample size of 25–30 individuals per
breeding population has been suggested for the use of genetics as a natural tag [90]. As a result,
more effort may be required during the initial collection phase to ensure that enough individu-
als remain in the analyses, once initial assignments to a breeding subpopulation are corrected
via backtracking. Unfortunately, the number of additional individuals that would need to be
collected at each breeding location will vary as a function of the degree of mixing of individuals
among subpopulations, which will be driven in large part by stochastic water movement (or
wind) in relation to propagule (e.g., seeds/eggs, larvae) production from each breeding subpop-
ulation that mixes. Because we find it unlikely that one could estimate a priori how many
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individuals at a specific breeding location emanated from another breeding location, we recom-
mend the collection of as many individuals at a given location that is practical. For situations in
which such analyses are likely to be conducted annually, we are optimistic that a target number
of individuals needed from each breeding subpopulation would emerge with time.

General Conclusions
Despite the growing use of particle backtracking and natural tagging approaches in both aquat-
ic and terrestrial ecosystems, we are unaware of any previous study that has coupled these ap-
proaches in a way that we have done here. Given the improved discrimination capabilities that
resulted from our use of particle backtracking in conjunction with microsatellite and otolith
microchemical information in a western Lake Erie fish population, we strongly believe that an
integrated particle backtracking-natural tagging approach that accounts for pre-collection dis-
persal history holds great potential to enhance our ability to address a wide range of ecological
questions that applicable to many ecosystem types. Such applications include: 1) determination
of metapopulation and genetic structure/dynamics; 2) identification of recruitment mecha-
nisms and how they vary among breeding subpopulations; 3) exploration of the degree of con-
nectivity among populations; 4) assessment of whether local breeding subpopulations have
evolved a life history in response to predictable physical features [91]; and 5) quantification of
which local breeding or nursery area(s) disproportionately contribute(s) recruits to the broader
population. Such advancement in our understanding of the natural world undoubtedly could
be used to benefit management and conservation efforts. For example, identification of impor-
tant breeding subpopulations or nursery areas could lead to altered population-specific harvest
quotas (e.g., increased or decreased harvest, depending on whether the focal species was valued
or considered a nuisance) or area-specific protection measures (e.g., no-take zones; [92]). By
contrast, breeding subpopulations or areas that are found to not be contributing recruits in a
manner that is on par with production at earlier life stages might require the establishment of
rehabilitation efforts [7]. Given all of these potential benefits to science, management, and con-
servation, we strongly encourage the use of integrated particle backtracking-natural tagging ap-
proaches, as well as research geared towards overcoming some of their known limitations.
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