67 research outputs found

    Omics technologies provide new insights into the molecular physiopathology of equine osteochondrosis

    Get PDF
    Background: Osteochondrosis (OC(D)) is a juvenile osteo-articular disorder affecting several mammalian species. In horses, OC(D) is considered as a multifactorial disease and has been described as a focal disruption of endochondral ossification leading to the development of osteoarticular lesions. Nevertheless, OC(D) physiopathology is poorly understood. Affected horses may present joint swelling, stiffness and lameness. Thus, OC(D) is a major concern for the equine industry. Our study was designed as an integrative approach using omics technologies for the identification of constitutive defects in epiphyseal cartilage and/or subchondral bone associated with the development of primary lesions to further understand OC(D) pathology. This study compared samples from non-affected joints (hence lesion-free) from OC(D)-affected foals (n = 5, considered predisposed samples) with samples from OC-free foals (n = 5) considered as control samples. Consequently, results are not confounded by changes associated with the evolution of the lesion, but focus on altered constitutive molecular mechanisms. Comparative proteomics and micro computed tomography analyses were performed on predisposed and OC-free bone and cartilage samples. Metabolomics was also performed on synovial fluid from OC-free, OC(D)-affected and predisposed joints. Results: Two lesion subtypes were identified: OCD (lesion with fragment) and OC (osteochondral defects). Modulated proteins were identified using omics technologies (2-DE proteomics) in cartilage and bone from affected foals compare to OC-free foals. These were associated with cellular processes including cell cycle, energy production, cell signaling and adhesion as well as tissue-specific processes such as chondrocyte maturation, extracellular matrix and mineral metabolism. Of these, five had already been identified in synovial fluid of OC-affected foals: ACTG1 (actin, gamma 1), albumin, haptoglobin, FBG (fibrinogen beta chain) and C4BPA (complement component 4 binding protein, alpha). Conclusion: This study suggests that OCD lesions may result from a cartilage defect whereas OC lesions may be triggered by both bone and cartilage defects, suggesting that different molecular mechanisms responsible for the equine osteochondrosis lesion subtypes and predisposition could be due to a defect in both bone and cartilage. This study will contribute to refining the definition of OC(D) lesions and may improve diagnosis and development of therapies for horses and other species, including humans

    Multiple M. tuberculosis Phenotypes in Mouse and Guinea Pig Lung Tissue Revealed by a Dual-Staining Approach

    Get PDF
    A unique hallmark of tuberculosis is the granulomatous lesions formed in the lung. Granulomas can be heterogeneous in nature and can develop a necrotic, hypoxic core which is surrounded by an acellular, fibrotic rim. Studying bacilli in this in vivo microenvironment is problematic as Mycobacterium tuberculosis can change its phenotype and also become acid-fast negative. Under in vitro models of differing environments, M. tuberculosis alters its metabolism, transcriptional profile and rate of replication. In this study, we investigated whether these phenotypic adaptations of M. tuberculosis are unique for certain environmental conditions and if they could therefore be used as differential markers. Bacilli were studied using fluorescent acid-fast auramine-rhodamine targeting the mycolic acid containing cell wall, and immunofluorescence targeting bacterial proteins using an anti-M. tuberculosis whole cell lysate polyclonal antibody. These techniques were combined and simultaneously applied to M. tuberculosis in vitro culture samples and to lung sections of M. tuberculosis infected mice and guinea pigs. Two phenotypically different subpopulations of M. tuberculosis were found in stationary culture whilst three subpopulations were found in hypoxic culture and in lung sections. Bacilli were either exclusively acid-fast positive, exclusively immunofluorescent positive or acid-fast and immunofluorescent positive. These results suggest that M. tuberculosis exists as multiple populations in most conditions, even within seemingly a single microenvironment. This is relevant information for approaches that study bacillary characteristics in pooled samples (using lipidomics and proteomics) as well as in M. tuberculosis drug development

    Clearance of viable Mycobacterium ulcerans from Buruli ulcer lesions during antibiotic treatment as determined by combined 16S rRNA reverse transcriptase /IS 2404 qPCR assay.

    Get PDF
    INTRODUCTION: Buruli ulcer (BU) caused by Mycobacterium ulcerans is effectively treated with rifampicin and streptomycin for 8 weeks but some lesions take several months to heal. We have shown previously that some slowly healing lesions contain mycolactone suggesting continuing infection after antibiotic therapy. Now we have determined how rapidly combined M. ulcerans 16S rRNA reverse transcriptase / IS2404 qPCR assay (16S rRNA) became negative during antibiotic treatment and investigated its influence on healing. METHODS: Fine needle aspirates and swab samples were obtained for culture, acid fast bacilli (AFB) and detection of M. ulcerans 16S rRNA and IS2404 by qPCR (16S rRNA) from patients with IS2404 PCR confirmed BU at baseline, during antibiotic and after treatment. Patients were followed up at 2 weekly intervals to determine the rate of healing. The Kaplan-Meier survival analysis was used to analyse the time to clearance of M. ulcerans 16S rRNA and the influence of persistent M ulcerans 16S rRNA on time to healing. The Mann Whitney test was used to compare the bacillary load at baseline in patients with or without viable organisms at week 4, and to analyse rate of healing at week 4 in relation to detection of viable organisms. RESULTS: Out of 129 patients, 16S rRNA was detected in 65% of lesions at baseline. The M. ulcerans 16S rRNA remained positive in 78% of patients with unhealed lesions at 4 weeks, 52% at 8 weeks, 23% at 12 weeks and 10% at week 16. The median time to clearance of M. ulcerans 16S rRNA was 12 weeks. BU lesions with positive 16S rRNA after antibiotic treatment had significantly higher bacterial load at baseline, longer healing time and lower healing rate at week 4 compared with those in which 16S rRNA was not detected at baseline or had become undetectable by week 4. CONCLUSIONS: Current antibiotic therapy for BU is highly successful in most patients but it may be possible to abbreviate treatment to 4 weeks in patients with a low initial bacterial load. On the other hand persistent infection contributes to slow healing in patients with a high bacterial load at baseline, some of whom may need antibiotic treatment extended beyond 8 weeks. Bacterial load was estimated from a single sample taken at baseline. A better estimate could be made by taking multiple samples or biopsies but this was not ethically acceptable

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Molecular techniques revolutionize knowledge of basidiomycete evolution

    Full text link

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    Get PDF
    Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection

    Matrix metalloproteinase 12 silencing: A therapeutic approach to treat pathological lung tissue remodeling?

    Full text link
    peer reviewedAmong the large matrix metalloproteinases (MMPs) family, MMP-12, also referred to as macrophage elastase, plays a significant role in chronic pulmonary pathologies characterized by an intense tissue remodeling such as asthma and COPD. This review will summarize knowledge about MMP-12 structure, functions and mechanisms of activation and regulation, including potential MMP-12 modulation by microRNA. As MMP-12 is involved in many tissue remodeling diseases, efforts have been made to develop specific synthetic inhibitors. However, at this time, very few chemical inhibitors have proved to be efficient and specific to a particular MMP. The relevance of silencing MMP-12 by RNA interference is highlighted. The specificity of this approach using siRNA or shRNA and the strategies to deliver these molecules in the lung are discussed
    corecore