57 research outputs found

    Thermodynamic Analysis and Process System Comparison of the Exhaust Gas Recirculated, Steam Injected and Humidified Micro Gas Turbine

    Get PDF
    Stringent environmental emission regulations and continuing efforts to reduce carbon dioxide (CO2) from the energy sector, in the context of global warming, have promoted interest to improve the efficiency of power generation systems whilst reducing emissions. Further, this has led to the development of innovative gas turbine systems which either result in higher electrical efficiency or the reduction of CO2 emissions. Micro gas turbines are one of the secure, economical and environmentally viable options for power and heat generation. Here, a Turbec T100 micro gas turbine (MGT) is simulated using Aspen HYSYS® V8.4 and validated through experimental data. Due to the consistency and robustness of the steady state model developed, it is further extended to three different innovative cycles: (i) an exhaust gas recirculated (EGR) cycle, in which part of the exhaust gas is dried and re-circulated to the MGT inlet; (ii) a steam injected (STIG) cycle, and (iii) a humid air turbine (HAT) cycle. The steam and hot water are generated through the exhaust of the recuperator for the STIG and HAT cycle, respectively. Further, the steam is directly injected into the recuperator for power augmentation, while for the HAT cycle; the compressed air is saturated with water in the humid tower before entering the recuperator. This study evaluates the impact of the EGR ratio, steam to air ratio, and water to air ratio on the performance and efficiency of the system. The comparative potential for each innovative cycle is assessed by thermodynamic properties estimation of process parameters through the models developed to better understand the behavior of each cycle. The thermodynamic assessment indicates that CO2 enrichment occurs for the three innovative cycles. Further, the results indicate that the electrical efficiency increases for the STIG and HAT cycle while it decreases for the EGR cycle. In conclusion, the innovative cycles indicates the possibilities to improve the system performance and efficiency

    Efficient X-ray CT-based numerical computations of structural and mass transport properties of nickel foam-based GDLs for PEFCs

    Get PDF
    Nickel foams are excellent candidate materials for gas diffusion layers (GDLs) for polymer electrolyte fuel cells (PEFCs) and this is due to their superior structural and transport properties. A highly computationally-efficient framework has been developed to not only estimate the key structural and mass transport properties but also to examine the multi-dimensional uniformity and/or the isotropy of these properties. Specifically, multiple two-dimensional X-ray CT images and/or numerical models have been used to computationally determine the porosity, the tortuosity, the pore size distribution, the ligament thickness, the specific surface area, the gas permeability and the effective diffusivity of a typical nickel foam sample. The results show that, compared to the conventionally used carbon substrate, the nickel foam sample demonstrate a high degree of uniformity and isotropy and that it has superior structural and mass transport properties, thus underpinning its candidacy as a GDL material for PEFCs. All the computationally-estimated properties, which were found to be consistent with the corresponding literature data, have been presented and thoroughly discussed

    Modelling and optimisation of the operation of a radiant warmer

    Get PDF
    This paper presents numerical calculations of the temperature field obtained for the case of a neonate placed under a radiant warmer. The results of the simulations show a very non-uniform temperature distribution on the skin of the neonate, which may cause increased evaporation leading to severe dehydration. For this reason, we propose some modifications on the geometry and operation of the radiant warmer, in order to make the temperature distribution more uniform and prevent the high temperature gradients observed on the surface of the neonate. It is concluded that placing a high conductivity blanket over the neonate and introducing additional screens along the side of the mattress, thus recovering the radiation heat escaping through the side boundaries, helped providing more uniform temperature fields.The European Union for the Marie Curie Fellowship grant awarded to the Centre for CFD, University of Leeds

    Air-breathing polymer electrolyte fuel cells: A review

    Get PDF
    Air-breathing polymer electrolyte fuel cells have become a promising power source to provide uninterrupted power for small electronic devices. This review focuses primarily on describing how the air-breathing PEFC performance is improved through optimisation of some key parameters: the design and material of the current collector; the design and material of the cathode gas diffusion layer; the catalyst layer; and cell orientation. In addition, it reviews the impact of the ambient conditions on the fuel cell performance and describes the methods adopted to mitigate the effects of extreme conditions of ambient temperature and humidity. Hydrogen storage and delivery technologies used in air-breathing fuel cells are then summarised and their design aspects are discussed critically. Finally, the few reported air-breathing fuel cell stacks and systems are reviewed, highlighting the challenges to the widespread commercialisation of air-breathing fuel cell technology

    COMPUTATIONAL FLUID DYNAMIC PREDICTION OF NOISE FROM A COLD TURBULENT PROPANE JET

    Get PDF
    ABSTRACT Numerical solutions of a turbulent jet flow are used to provide velocity information throughout a simple cold turbulent propane jet at a Reynolds number of 68,000. Predictions provided by the Reynolds-averaged Navier-Stokes simulations, based on a Reynolds stress turbulence model, are compared with experimental data available in the literature. The effect of the modelled inlet boundary conditions on the predicted flow field is described, and the discrepancy between the simulation results and experiment measurements is found to be less than the corresponding variations due to uncertainness in the experimental boundary conditions. In addition, these solutions are used as the basis for noise predictions for the jet based on Lighthill's theory using the Goldstein broadband noise source formalization that postulates axisymmetric turbulence superposed on the mean flow. The latter model provides an aeroacoustic tool that is reasonable in identifying components or surfaces that generate significant amounts of noise, thereby providing opportunities for early design changes to aircraft and gas turbine components

    Process simulation and thermodynamic analysis of a micro turbine with post-combustion CO2 capture and exhaust gas recirculation

    Get PDF
    With the effects of the emissions from power plants causing global climate change, the trend towards lower emission systems such as natural gas power plant is increasing. In this paper a Turbec T100 micro gas turbine is studied. The system is assessed thermodynamically using a steady-state model; model results of its alteration with exhaust gas recirculation (EGR) are presented in this paper. The process simulation with EGR offers a useful assessment when integrated with post-combustion CO2 capture. The EGR model results in the enrichment of the CO2 which decrease the energy demand of the CO2 capture system

    Impact of CO₂-enriched combustion air on micro-gas turbine performance for carbon capture

    Get PDF
    Power generation is one of the largest anthropogenic greenhouse gas emission sources; although it is now reducing in carbon intensity due to switching from coal to gas, this is only part of a bridging solution that will require the utilization of carbon capture technologies. Gas turbines, such as those at the UK Carbon Capture Storage Research Centre's Pilot-scale Advanced CO2 Capture Technology (UKCCSRC PACT) National Core Facility, have high exhaust gas mass flow rates with relatively low CO2 concentrations; therefore solvent-based post-combustion capture is energy intensive. Exhaust gas recirculation (EGR) can increase CO2 levels, reducing the capture energy penalty. The aim of this paper is to simulate EGR through enrichment of the combustion air with CO2 to assess changes to turbine performance and potential impacts on complete generation and capture systems. The oxidising air was enhanced with CO2, up to 6.29%vol dry, impacting mechanical performance, reducing both engine speed by over 400 revolutions per minute and compression temperatures. Furthermore, it affected complete combustion, seen in changes to CO and unburned hydrocarbon emissions. This impacted on turbine efficiency, which increased specific fuel consumption (by 2.9%). CO2 enhancement could therefore result in significant efficiency gains for the capture plant

    Modelling of hydraulic fracturing process by coupled discrete element and fluid dynamic methods

    Get PDF
    A three-dimensional model is presented and used to reproduce the laboratory hydraulic fracturing test performed on a thick-walled hollow cylinder limestone sample. This work aims to investigate the implications of the fluid flow on the behaviour of the micro-structure of the rock sample, including the material strength, its elastic constants and the initialisation and propagation of fractures. The replication of the laboratory test conditions has been performed based on the coupled Discrete Element Method (DEM) and Computational Fluid Dynamics scheme. The numerical results are in good agreement with the experimental data, both qualitatively and quantitatively. The developed model closely validates the overall behaviour of the laboratory sample, providing a realistic overview of the cracking propagation towards total collapse as well as complying with Lame’s theory for thick-walled cylinders. This research aims to provide some insight into designing an accurate DEM model of a fracturing rock that can be used to predict its geo-mechanical behaviour during Enhanced Oil Recovery applications

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore