118 research outputs found

    Applying the cold plasma dispersion relation to whistler-mode chorus waves:EMFISIS wave measurements from the Van Allen Probes

    Get PDF
    Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the the cold plasma dispersion relation in this context is tested using EMFISIS observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1-0.9 fce). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10¯3 nT2, using the cold plasma dispersion relation results in an underestimate of the wave intensity by a factor of 2 or greater, 56% of the time over the full chorus wave band, 60% of the time for lower band chorus, and 59% of the time for upper band chorus. Hence during active periods, empirical chorus wave models that are reliant on the cold plasma dispersion relation will underestimate chorus wave intensities to a significant degree, thus causing questionable calculation of wave-particle resonance effects on MeV electrons

    Emotion: Appraisal-coping model for the "Cascades" problem

    Full text link
    Modelling emotion has become a challenge nowadays. Therefore, several models have been produced in order to express human emotional activity. However, only a few of them are currently able to express the close relationship existing between emotion and cognition. An appraisal-coping model is presented here, with the aim to simulate the emotional impact caused by the evaluation of a particular situation (appraisal), along with the consequent cognitive reaction intended to face the situation (coping). This model is applied to the "Cascades" problem, a small arithmetical exercise designed for ten-year-old pupils. The goal is to create a model corresponding to a child's behaviour when solving the problem using his own strategies.Comment: 6 page

    Specification of the near-Earth space environment with SHIELDS

    Get PDF
    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design

    Update of EULAR recommendations for the treatment of systemic sclerosis

    Get PDF
    The aim was to update the 2009 European League against Rheumatism (EULAR) recommendations for the treatment of systemic sclerosis (SSc), with attention to new therapeutic questions. Update of the previous treatment recommendations was performed according to EULAR standard operating procedures. The task force consisted of 32 SSc clinical experts from Europe and the USA, 2 patients nominated by the pan-European patient association for SSc (Federation of European Scleroderma Associations (FESCA)), a clinical epidemiologist and 2 research fellows. All centres from the EULAR Scleroderma Trials and Research group were invited to submit and select clinical questions concerning SSc treatment using a Delphi approach. Accordingly, 46 clinical questions addressing 26 different interventions were selected for systematic literature review. The new recommendations were based on the available evidence and developed in a consensus meeting with clinical experts and patients. The procedure resulted in 16 recommendations being developed (instead of 14 in 2009) that address treatment of several SSc-related organ complications: Raynaud's phenomenon (RP), digital ulcers (DUs), pulmonary arterial hypertension (PAH), skin and lung disease, scleroderma renal crisis and gastrointestinal involvement. Compared with the 2009 recommendations, the 2016 recommendations include phosphodiesterase type 5 (PDE-5) inhibitors for the treatment of SSc-related RP and DUs, riociguat, new aspects for endothelin receptor antagonists, prostacyclin analogues and PDE-5 inhibitors for SSc-related PAH. New recommendations regarding the use of fluoxetine for SSc-related RP and haematopoietic stem cell transplantation for selected patients with rapidly progressive SSc were also added. In addition, several comments regarding other treatments addressed in clinical questions and suggestions for the SSc research agenda were formulated. These updated data-derived and consensus-derived recommendations will help rheumatologists to manage patients with SSc in an evidence-based way. These recommendations also give directions for future clinical research in SSc

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Risk-reducing hysterectomy and bilateral salpingo-oophorectomy in female heterozygotes of pathogenic mismatch repair variants: a Prospective Lynch Syndrome Database report

    Get PDF
    Purpose To determine impact of risk-reducing hysterectomy and bilateral salpingo-oophorectomy (BSO) on gynecological cancer incidence and death in heterozygotes of pathogenic MMR (path_MMR) variants. Methods The Prospective Lynch Syndrome Database was used to investigate the effects of gynecological risk-reducing surgery (RRS) at different ages. Results Risk-reducing hysterectomy at 25 years of age prevents endometrial cancer before 50 years in 15%, 18%, 13%, and 0% of path_MLH1, path_MSH2, path_MSH6, and path_PMS2 heterozygotes and death in 2%, 2%, 1%, and 0%, respectively. Risk-reducing BSO at 25 years of age prevents ovarian cancer before 50 years in 6%, 11%, 2%, and 0% and death in 1%, 2%, 0%, and 0%, respectively. Risk-reducing hysterectomy at 40 years prevents endometrial cancer by 50 years in 13%, 16%, 11%, and 0% and death in 1%, 2%, 1%, and 0%, respectively. BSO at 40 years prevents ovarian cancer before 50 years in 4%, 8%, 0%, and 0%, and death in 1%, 1%, 0%, and 0%, respectively. Conclusion Little benefit is gained by performing RRS before 40 years of age and premenopausal BSO in path_MSH6 and path_PMS2 heterozygotes has no measurable benefit for mortality. These findings may aid decision making for women with LS who are considering RRS.Hereditary cancer genetic

    White paper on light sterile neutrino searches and related phenomenology

    Get PDF

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
    corecore