31 research outputs found

    Hydroclimate variability from western Iberia (Portugal) during the Holocene: insights from a composite stalagmite isotope record

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Thatcher, D. L., Wanamaker, A. D., Denniston, R. F., Asmerom, Y., Polyak, V. J., Fullick, D., Ummenhofer, C. C., Gillikin, D. P., & Haws, J. A. Hydroclimate variability from western Iberia (Portugal) during the Holocene: insights from a composite stalagmite isotope record. Holocene, (2020): 095968362090864, doi:10.1177/0959683620908648.Iberia is predicted under future warming scenarios to be increasingly impacted by drought. While it is known that this region has experienced multiple intervals of enhanced aridity over the Holocene, additional hydroclimate-sensitive records from Iberia are necessary to place current and future drying into a broader perspective. Toward that end, we present a multi-proxy composite record from six well-dated and overlapping speleothems from Buraca Gloriosa (BG) cave, located in western Portugal. The coherence between the six stalagmites in this composite stalagmite record illustrates that climate (not in-cave processes) impacts speleothem isotopic values. This record provides the first high-resolution, precisely dated, terrestrial record of Holocene hydroclimate from west-central Iberia. The BG record reveals that aridity in western Portugal increased secularly from 9.0 ka BP to present, as evidenced by rising values of both carbon (δ13C) and oxygen (δ18O) stable isotope values. This trend tracks the decrease in Northern Hemisphere summer insolation and parallels Iberian margin sea surface temperatures (SST). The increased aridity over the Holocene is consistent with changes in Hadley Circulation and a southward migration of the Intertropical Convergence Zone (ITCZ). Centennial-scale shifts in hydroclimate are coincident with changes in total solar irradiance (TSI) after 4 ka BP. Several major drying events are evident, the most prominent of which was centered around 4.2 ka BP, a feature also noted in other Iberian climate records and coinciding with well-documented regional cultural shifts. Substantially, wetter conditions occurred from 0.8 ka BP to 0.15 ka BP, including much of the ‘Little Ice Age’. This was followed by increasing aridity toward present day. This composite stalagmite proxy record complements oceanic records from coastal Iberia, lacustrine records from inland Iberia, and speleothem records from both northern and southern Spain and depicts the spatial and temporal variability in hydroclimate in Iberia.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported, in part, by the US National Science Foundation (Grants: #1804528 to ADW; #1804635 to RD; #1804132 to CCU; #1806025 to YA and VP; #1805163 to DPG; BCS-0455145, BCS-0612923, and BCS-1118155 to JAH)

    Organic proxies in speleothems: analytical method and first data from cave KNI-51

    Get PDF
    Speleothems are important archives for paleo environments thanks to their high temporal resolution and potential for precise and accurate dating. Organic biomarkers in speleothems are not widely explored because of low concentrations and high sample amount required to obtain detectable levels. The potential for paleoenvironmental reconstruction from organic molecules in speleothems is high, but low contamination and high sensitivity analytical tools are required to obtain well resolved and reliable records. We developed a method for the analysis of fire-derived polycyclic aromatic hydrocarbons (PAHs) and nalkanes in speleothems and applied it to aragonite stalagmites from cave KNI-51 in the central Australian tropics. These stalagmites have already been precisely dated by U/Th methods, and have detailed oxygen isotopic time series that provide a detailed record of past Australian monsoon rainfall variability [1]. The characteristics of the cave make it suitable for this research, thanks to the considerably high growth rates of the stalagmites (1-2 mm yr-1), that allow analysis at an annual resolution. In addition, cave KNI-51 is shallow, contained within highly permeable rillenkarren limestone, and overlain by extremely thin, carbon-poor soils. Thus, the sequestration, biodegradation, or mobilization of PAHs and n-alkanes in soils and bedrock are minimized, allowing them to be easily transported from the surface to the stalagmite. In order to check for the risk of contamination of the aragonite layers during flooding episodes, we also analyzed sediments from above and inside the cave. Results show that flood sediments do not bias our analyses of carbonate material. With respect to the few existing methods for PAH analysis in speleothems [2, 3], some substantial modifications were made to the pre-analytical phase, all of which were aimed at increasing the analytical signal: our analytical protocol allows detection of analytes in stalagmites at the ng to sub-ng level by guaranteeing the lowest contamination. Samples are drilled from pre-cleaned stalagmite slabs, dissolved in HCl at low temperature, solvent-extracted and volume reduced in a class 10,000 organic cleanroom. 19 different 2- to 6-ring PAH compounds and 26 n-alkanes (C10-C35) were analyzed and quantified by GC-MS. Preliminary results suggest increased fire activity in the mid-15thcentury, marked in particular by the presence of fluoranthene, pyrene, benzo(e)pyrene and indeno(1,2,3-c,d)pyrene. Only high molecular weight n-alkanes in the range C23-C32 had significant concentrations in most samples, showing no marked odd-even predominance, likely indicating the presence of another source beside plant residues in soil

    Decoupling of monsoon activity across the northern and southern Indo-Pacific during the Late Glacial

    Get PDF
    © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 176 (2017): 101-105, doi:10.1016/j.quascirev.2017.09.014.Recent studies of stalagmites from the Southern Hemisphere tropics of Indonesia revealed two shifts in monsoon activity not apparent in records from the Northern Hemisphere sectors of the Austral-Asian monsoon system: an interval of enhanced rainfall at ~19 ka, immediately prior to Heinrich Stadial 1, and a sharp increase in precipitation at ~9 ka. Determining whether these events are site-specific or regional is important for understanding the full range of sensitivities of the Austral-Asian monsoon. We present a discontinuous 40 kyr carbon isotope record of stalagmites from two caves in the Kimberley region of the north-central Australian tropics. Heinrich stadials are represented by pronounced negative carbon isotopic anomalies, indicative of enhanced rainfall associated with a southward shift of the intertropical convergence zone and consistent with hydroclimatic changes observed across Asia and the Indo- Pacific. Between 20-8 ka, however, the Kimberley stalagmites, like the Indonesian record, reveal decoupling of monsoon behavior from Southeast Asia, including the early deglacial wet period (which we term the Late Glacial Pluvial) and the abrupt strengthening of early Holocene monsoon rainfall.Funded by grants from the U.S. National Science Foundation Paleo Perspectives on Climate Change program (AGS-1103413 and AGS-1502917 to RFD) and AGS-1602455 (to CCU and RFD), the Center for Global and Regional Environmental Research, and Cornell College (to RFD). CCU acknowledges support from The Investment in Science Fund given primarily by WHOI Trustee and Corporation Members. Support also received from the Kimberley Foundation Australia

    Reply to Nott: Assessing biases in speleothem records of flood events

    Get PDF
    This article is published as Denniston, Rhawn F., Gabriele Villarini, Angelique N. Gonzales, Victor J. Polyak, Caroline C. Ummenhofer, Matthew S. Lachniet, Alan D. Wanamaker Jr, William F. Humphreys, David Woods, and John Cugley. "Reply to Nott: Assessing biases in speleothem records of flood events." Proceedings of the National Academy of Sciences of the United States of America 112, no. 34 (2015): E4637. doi: 10.1073/pnas.1513354112. Posted with permission.</p

    Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia

    Get PDF
    Assessing temporal variability in extreme rainfall events before the historical era is complicated by the sparsity of long-term “direct” storm proxies. Here we present a 2,200-y-long, accurate, and precisely dated record of cave flooding events from the northwest Australian tropics that we interpret, based on an integrated analysis of meteorological data and sediment layers within stalagmites, as representing a proxy for extreme rainfall events derived primarily from tropical cyclones (TCs) and secondarily from the regional summer monsoon. This time series reveals substantial multicentennial variability in extreme rainfall, with elevated occurrence rates characterizing the twentieth century, 850–1450 CE (Common Era), and 50–400 CE; reduced activity marks 1450–1650 CE and 500–850 CE. These trends are similar to reconstructed numbers of TCs in the North Atlantic and Caribbean basins, and they form temporal and spatial patterns best explained by secular changes in the dominant mode of the El Niño/Southern Oscillation (ENSO), the primary driver of modern TC variability. We thus attribute long-term shifts in cyclogenesis in both the central Australian and North Atlantic sectors over the past two millennia to entrenched El Niño or La Niña states of the tropical Pacific. The influence of ENSO on monsoon precipitation in this region of northwest Australia is muted, but ENSO-driven changes to the monsoon may have complemented changes to TC activity

    Sensitivity of northwest Australian tropical cyclone activity to ITCZ migration since 500 CE

    Get PDF
    Tropical cyclones (TCs) regularly form in association with the intertropical convergence zone (ITCZ), and thus, its positioning has implications for global TC activity. While the poleward extent of the ITCZ has varied markedly over past centuries, the sensitivity with which TCs responded remains poorly understood from the proxy record, particularly in the Southern Hemisphere. Here, we present a high-resolution, composite stalagmite record of ITCZ migrations over tropical Australia for the past 1500 years. When integrated with a TC reconstruction from the Australian subtropics, this time series, along with downscaled climate model simulations, provides an unprecedented examination of the dependence of subtropical TC activity on meridional shifts in the ITCZ. TCs tracked the ITCZ at multidecadal to centennial scales, with a more southward position enhancing TC-derived rainfall in the subtropics. TCs may play an increasingly important role in Western Australia’s moisture budgets as subtropical aridity increases due to anthropogenic warming

    Interpreting historical, botanical, and geological evidence to aid preparations for future floods

    Get PDF
    River flooding is among the most destructive of natural hazards globally, causing widespread loss of life, damage to infrastructure and economic deprivation. Societies are currently under increasing threat from such floods, predominantly from increasing exposure of people and assets in flood-prone areas, but also as a result of changes in flood magnitude, frequency, and timing. Accurate flood hazard and risk assessment are therefore crucial for the sustainable development of societies worldwide. With a paucity of hydrological measurements, evidence from the field offers the only insight into truly extreme events and their variability in space and time. Historical, botanical, and geological archives have increasingly been recognized as valuable sources of extreme flood event information. These different archives are here reviewed with a particular focus on the recording mechanisms of flood information, the historical development of the methodological approaches and the type of information that those archives can provide. These studies provide a wealthy dataset of hundreds of historical and palaeoflood series, whose analysis reveals a noticeable dominance of records in Europe. After describing the diversity of flood information provided by this dataset, we identify how these records have improved and could further improve flood hazard assessments and, thereby, flood management and mitigation plans

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotopic data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to use the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally-distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model’s ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on 18O values, the optimum period for the modern observational baseline, and the selection of an appropriate time-window for creating means of the isotope data for palaeo time slices
    corecore