80 research outputs found

    Enhanced Edar Signalling Has Pleiotropic Effects on Craniofacial and Cutaneous Glands

    Get PDF
    The skin carries a number of appendages, including hair follicles and a range of glands, which develop under the influence of EDAR signalling. A gain of function allele of EDAR is found at high frequency in human populations of East Asia, with genetic evidence suggesting recent positive selection at this locus. The derived EDAR allele, estimated to have reached fixation more than 10,000 years ago, causes thickening of hair fibres, but the full spectrum of phenotypic changes induced by this allele is unknown. We have examined the changes in glandular structure caused by elevation of Edar signalling in a transgenic mouse model. We find that sebaceous and Meibomian glands are enlarged and that salivary and mammary glands are more elaborately branched with increased Edar activity, while the morphology of eccrine sweat and tracheal submucosal glands appears to be unaffected. Similar changes to gland sizes and structures may occur in human populations carrying the derived East Asian EDAR allele. As this allele attained high frequency in an environment that was notably cold and dry, increased glandular secretions could represent a trait that was positively selected to achieve increased lubrication and reduced evaporation from exposed facial structures and upper airways

    Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the Scaleless line of featherless chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scaleless (<it>sc/sc</it>) chickens carry a single recessive mutation that causes a lack of almost all body feathers, as well as foot scales and spurs, due to a failure of skin patterning during embryogenesis. This spontaneous mutant line, first described in the 1950s, has been used extensively to explore the tissue interactions involved in ectodermal appendage formation in embryonic skin. Moreover, the trait is potentially useful in tropical agriculture due to the ability of featherless chickens to tolerate heat, which is at present a major constraint to efficient poultry meat production in hot climates. In the interests of enhancing our understanding of feather placode development, and to provide the poultry industry with a strategy to breed heat-tolerant meat-type chickens (broilers), we mapped and identified the <it>sc</it> mutation.</p> <p>Results</p> <p>Through a cost-effective and labour-efficient SNP array mapping approach using DNA from <it>sc/sc</it> and <it>sc/+</it> blood sample pools, we map the <it>sc</it> trait to chromosome 4 and show that a nonsense mutation in <it>FGF20</it> is completely associated with the <it>sc/sc</it> phenotype. This mutation, common to all <it>sc/sc</it> individuals and absent from wild type, is predicted to lead to loss of a highly conserved region of the FGF20 protein important for FGF signalling. <it>In situ</it> hybridisation and quantitative RT-PCR studies reveal that <it>FGF20</it> is epidermally expressed during the early stages of feather placode patterning. In addition, we describe a dCAPS genotyping assay based on the mutation, developed to facilitate discrimination between wild type and <it>sc</it> alleles.</p> <p>Conclusions</p> <p>This work represents the first loss of function genetic evidence supporting a role for FGF ligand signalling in feather development, and suggests FGF20 as a novel central player in the development of vertebrate skin appendages, including hair follicles and exocrine glands. In addition, this is to our knowledge the first report describing the use of the chicken SNP array to map genes based on genotyping of DNA samples from pooled whole blood. The identification of the <it>sc</it> mutation has important implications for the future breeding of this potentially useful trait for the poultry industry, and our genotyping assay can facilitate its rapid introgression into production lines.</p

    FGF and EDA pathways control initiation and branching of distinct subsets of developing nasal glands

    Get PDF
    Hypertrophy, hyperplasia and altered mucus secretion from the respiratory submucosal glands (SMG) are characteristics of airway diseases such as cystic fibrosis, asthma and chronic bronchitis. More commonly, hyper-secretion of the nasal SMGs contributes to allergic rhinitis and upper airway infection. Considering the role of these glands in disease states, there is a significant dearth in understanding the molecular signals that regulate SMG development and patterning. Due to the imperative role of FGF signalling during the development of other branched structures, we investigated the role of Fgf10 during initiation and branching morphogenesis of murine nasal SMGs. Fgf10 is expressed in the mesenchyme around developing SMGs while expression of its receptor Fgfr2 is seen within glandular epithelial cells. In the Fgf10 null embryo, Steno's gland and the maxillary sinus gland were completely absent while other neighbouring nasal glands showed normal duct elongation but defective branching. Interestingly, the medial nasal glands were present in Fgf10 homozygotes but missing in Fgfr2b mutants, with expression of Fgf7 specifically expressed around these developing glands, indicating that Fgf7 might compensate for loss of Fgf10 in this group of glands. Intriguingly the lateral nasal glands were only mildly affected by loss of FGF signalling, while these glands were missing in Eda mutant mice, where the Steno's and maxillary sinus gland developed as normal. This analysis reveals that regulation of nasal gland development is complex with different subsets of glands being regulated by different signalling pathways. This analysis helps shed light on the nasal gland defects observed in patients with hypohidrotic ectodermal dysplasia (HED) (defect EDA pathway) and LADD syndrome (defect FGFR2b pathway). (C) 2016 Elsevier Inc. All rights reserved.Peer reviewe

    Ectodysplasin signaling in cutaneous appendage development: Dose, duration and diversity

    Get PDF
    The development of several skin appendages is guided by prenatal Ectodysplasin signalling. Cui et al. (this issue, 2009) report on the dose and duration of Ectodysplasin signalling required for the maintenance and morphogenesis of different appendages. They find that achievement of an intimate arrangement between epithelial and mesenchymal cell populations correlates with the acquisition of autonomy from Ectodysplasin stimulation

    Elevated EDAR signalling promotes mammary gland tumourigenesis with squamous metaplasia

    Get PDF
    Ectodysplasin A receptor (EDAR) is a death receptor in the Tumour Necrosis Factor Receptor (TNFR) superfamily with roles in the development of hair follicles, teeth and cutaneous glands. Here we report that human Oestrogen Receptor (ER) negative breast carcinomas which display squamous differentiation express EDAR strongly. Using a mouse model with a high Edar copy number, we show that elevated EDAR signalling results in a high incidence of mammary tumours in breeding female mice. These tumours resemble the EDAR-high human tumours in that they are characterised by a lack of oestrogen receptor expression, contain extensive squamous metaplasia, and display strong β-catenin transcriptional activity. In the mouse model, all of the tumours carry somatic deletions of the third exon of the CTNNB1 gene that encodes β-catenin. Deletion of this exon yields unconstrained β-catenin signalling activity. We also demonstrate that β-catenin activity is required for transformed cell growth, showing that increased EDAR signalling creates an environment in which β-catenin activity can readily promote tumourigenesis. Together, this work identifies a novel death receptor oncogene in breast cancer, whose mechanism of transformation is based on the interaction between the WNT and Ectodysplasin A (EDA) pathways

    Hierarchical patterning modes orchestrate hair follicle morphogenesis

    Get PDF
    Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction–diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction–diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern’s condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) β signalling, which serves to drive chemotactic mesenchymal patterning when reaction–diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis

    Distinct Impacts of Eda and Edar Loss of Function on the Mouse Dentition

    Get PDF
    The Eda-A1-Edar signaling pathway is involved in the development of organs with an ectodermal origin, including teeth. In mouse, mutants are known for both the ligand, Eda-A1 (Tabby), and the receptor, Edar (Downless). The adult dentitions of these two mutants have classically been considered to be similar. However, previous studies mentioned differences in embryonic dental development between EdaTa and Edardl-J mutants. A detailed study of tooth morphology in mutants bearing losses of functions of these two genes thus appears necessary to test the pattern variability induced by the developmental modifications. 3D-reconstructions of the cheek teeth have been performed at the ESRF (Grenoble, France) by X-ray synchrotron microtomography to assess dental morphology. The morphological variability observed in EdaTa and Edardl-J mutants have then been compared in detail. Despite patchy similarities, our detailed work on cheek teeth in EdaTa and Edardl-J mice show that all dental morphotypes defined in Edardl-J mice resolutely differ from those of EdaTa mice. This study reveals that losses of function of Eda and Edar have distinct impacts on the tooth size and morphology, contrary to what has previously been thought. The results indicate that unknown mechanisms of the Eda pathway are implicated in tooth morphogenesis. Three hypotheses could explain our results; an unexpected role of the Xedar pathway (which is influenced by the Eda gene product but not that of Edar), a more complex connection than has been appreciated between Edar and another protein, or a ligand-independent activity for Edar. Further work is necessary to test these hypotheses and improve our understanding of the mechanisms of development

    The Edar subfamily in feather placode formation

    Get PDF
    AbstractA subgroup of the TNF receptor family, composed of Edar, Troy and Xedar, are implicated in the development of ectodermal appendages, such as hair follicles, teeth and sweat glands. We have isolated chicken orthologues of these three receptors and analysed their roles in early feather development. Conservation of protein sequences between mammalian and avian proteins is variable, with avian Edar showing the greatest degree of sequence identity. cXedar differs from its mammalian orthologue in that it contains an intracellular death domain. All three receptors are expressed during early feather morphogenesis and dominant negative forms of each receptor impair the epithelial contribution to feather bud morphogenesis, while the dermal contribution appears unaffected. Hyperactivation of each receptor leads to more widespread assumption of placode fate, though in different regions of the skin. Receptor signaling converges on NF-κB, and inhibiting this transcription factor alters feather bud number and size in a stage-specific manner. Our findings illustrate the roles of these three receptors during avian skin morphogenesis and also suggest that activators of feather placode fate undergo mutual regulation to reach a decision on skin appendage location and size

    Hair follicles are required for optimal growth during lateral skin expansion

    Get PDF
    The hair follicles and the interfollicular epidermis of intact mature skin are maintained by distinct stem cell populations. Upon wounding, however, emigration of hair follicle keratinocytes to the interfollicular epidermis plays a role in acute stages of healing. In addition to this repair function, rapidly cycling cells of the upper hair follicle have been observed transiting to the interfollicular epidermis in neonatal skin. Here we report that an absence of hair follicle development leads to shortening and kinking of the mouse tail. These skeletal defects are reduced by stimulating keratinocyte proliferation, suggesting that they arise from impaired epidermal expansion. We confirm that rapidly cycling cells of the hair follicle emigrate to the interfollicular epidermis of the neonatal tail. These results suggest that an absence of hair follicles results in impaired skin growth that is unable to keep pace with the rapidly elongating axial skeleton of the tail. Thus, in addition to their role in wound repair, hair follicles can make a significant contribution to lateral expansion of the interfollicular epidermis in the absence of trauma
    • …
    corecore