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The development of several skin appendages is guided by prenatal Ectodysplasin 

signalling. Cui et al. (this issue, 2009) report on the dose and duration of 

Ectodysplasin signalling required for the maintenance and morphogenesis of 

different appendages. They find that achievement of an intimate arrangement 

between epithelial and mesenchymal cell populations correlates with the 

acquisition of autonomy from Ectodysplasin stimulation.  

 

 

Cutaneous appendage development 

The skin arises from a simple sheet of embryonic ectoderm underlain by 

mesenchyme. The cells in this epithelial sheet are initially homogeneously distributed, 

but subsequently undergo clustering at specific locations to produce an array of 

placodes. Depending on their location on the body and time of formation these 

placodes develop into a number of diverse cutaneous appendages, including glands, 

teeth, and several types of hair follicle. Generation of a mature organ from the 

embryonic placode involves production of a downgrowth due to rapid epithelial 

proliferation followed by cellular differentiation to enable physiological functioning 

of the appendage (Schmidt-Ullrich and Paus, 2005). 

 

The similar cellular rearrangements observed during development of multiple 

appendage types are underlain by the utilisation of common signalling pathways to 

guide cell behaviour. Though a regulatory efficiency is achieved by employing the 

same genes in multiple situations, an outcome of this shared genetic basis is that 

inherited conditions affecting appendage development tend to be syndromic, affecting 

multiple appendage types. One such condition, hypohidrotic ectodermal dysplasia 
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(HED), is characterised by a reduction in hair follicle development, the growth of a 

few, misshapen teeth and the absence of eccrine sweat glands. 

 

HED is caused by mutation of genes encoding components of a TNF-like signalling 

pathway. Activation of this pathway is initiated by binding of the TNF-like ligand 

Ectodysplasin (EDA) to its transmembrane receptor EDAR. EDAR then connects to a 

canonical TNF signalling cascade through a dedicated adapter protein, ultimately 

leading to stimulation of NF-κB. Mutation of EDA is the most common cause of 

HED, which typically presents in boys due to its presence on the X-chromosome 

(Mikkola, 2008). Interestingly, not only is this signalling system common to a range 

of ectodermal appendages, but is required for appendage formation across the 

vertebrates, from human to fish (Harris et al., 2008). With the breadth of model 

organs and organisms available for study, together with a well characterised signalling 

pathway, the basic questions regarding EDA action are moving on to examination of 

the quantity and timing of its action needed to guide normal development. 

 

Critical periods and critical durations in appendage development 

Cutaneous appendages form in a temporal sequence, with only one type of appendage 

produced in a particular skin region at a given time. For example, in the mouse three 

distinct waves of hair follicle formation produce the three different types of hair 

follicle in the adult. From embryonic day 14 (E14) to E16 primary hair follicles are 

formed; these make the long guard hairs of the coat and do not develop in animals 

lacking Eda. In contrast, the secondary and tertiary follicles initiate from 

approximately E16 and E19, respectively, and produce distinct hair types. These later 

waves of folliculogenesis do occur in Eda mutant mice, though abnormal hairs are 

produced. 

 

The elucidation of the molecular basis of X-linked HED has enabled therapeutic 

efforts aimed at EDA protein replacement during development. The efficacy of such 

experimental therapies relies on identifying the critical periods during development at 

which different tissues are capable of responding to EDA. Addressing this issue in a 

mouse HED model, Gaide and Schneider administered a bolus of a recombinant EDA 

fusion protein at different times during development and determined the degree of 
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phenotypic rescue in adult animals. They found that the critical period at which EDA 

action is required to produce a particular appendage generally matches the time at 

which development of that structure is normally initiated. Thus midgestational EDA 

administration effected a much broader rescue of mutant phenotypes than did 

postnatal EDA treatment (Gaide and Schneider, 2003). 

 

Cui et al (Cui et al., 2009) have also addressed the timing of Eda action in appendage 

development, but from a very different perspective. Using a mouse model in which 

the only source of Eda is a transgene that can be switched off by administration of 

doxycycline, they have examined the critical duration of signalling required stabilise 

the development of incipient hair follicles and sweat glands. They find that 

withdrawing Eda at E15, when the skin is populated with primary hair follicle 

placodes, leads to a lack of these follicles in the adult, demonstrating a requirement 

for a duration of Eda signal beyond the initial stages of placode formation. Abolition 

of Eda expression at E17 or later, however, produced a normal complement of guard 

hairs in the adult coat. This acquisition of Eda autonomy correlates with the 

establishment of a dermal papilla precursor in close association with the epithelial 

downgrowth (Figure 1). Thus progression of hair follicle development shifts from a 

reliance on the widely produced Eda signal to a more intimate reciprocal 

communication between these two closely apposed cell populations. 

 

Eccrine sweat glands develop slightly later in than primary hair placodes and in 

mouse form only on the footpads. Despite these differences, an E19 sweat gland 

rudiment closely resembles an E17 hair follicle in the extent of epithelial 

downgrowth, but with the striking difference that there is no sign of an accompanying 

mesenchymal signalling centre. In contrast to the hair follicle rudiment, withdrawal of 

the Eda signal at this stage results in a failure of gland development, suggesting that 

the developing sweat gland’s solitary epithelial cord requires sustained Ectodysplasin 

stimulation to reach maturity.  

 

The ability to remove Eda also allows an examination of the cellular consequences of 

signal starvation. Eda withdrawal from the sweat gland rudiment leaves epithelial 

remnants lacking a definite organ identity stranded in the dermis. It would be 

interesting to determine the fate of cells in the primary hair placodes that regress upon 
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withdrawal of Eda as in normal skin all placodal cells are committed to producing hair 

follicles, with none of these cells contributing to the interfollicular epidermis. It is 

possible that cells lose their commitment to a hair follicle fate and become 

interfollicular epidermis, though such dedifferentiation is normally observed only 

upon wounding (Levy et al., 2005). Alternatively, these placode cells may be 

removed by apoptosis once starved of Eda, or perhaps they survive to find their way 

into the later forming secondary and tertiary hair follicles. 

 

Dose effects of Ectodysplasin signalling 

Though clinical studies have primarily focused on the consequences of complete loss 

of EDA function, it is becoming clear that there is a more graded diversity in the 

intensity of this signal in human populations. EDA mutations that appear to be 

hypomorphic are associated with non-syndromic tooth agenesis (Li et al., 2008) and 

even fish tooth development appears to be particularly sensitive to reduced Edar 

activity (Harris et al., 2008). Conversely, a variant of EDAR with a higher signal 

transduction potency is associated with the increased hair fibre thickness of East 

Asian populations (Fujimoto et al., 2008; Mou et al., 2008). Indeed, it is interesting to 

note that isolated tooth agenesis caused by EDA mutation (e.g.(Li et al., 2008) has 

thus far been reported in Asian families, suggesting that interaction between an EDA 

allele with reduced function and a more potent EDAR allele might affect the clinical 

presentation of HED. 

 

In mouse, too, Eda dose plays a role in determining hair fibre characteristics, with 

elevated Eda expression producing a spiky hair coat due to the angle at which hairs 

lay relative to the skin. The regulatable Eda model reveals that this characteristic 

requires a slightly longer signal than that required for primary hair follicle 

stabilisation. However, removal of Eda prior to birth still confers a shaggy coat 

texture that appears to be indelible, despite the cyclical nature of hair growth in the 

adult. 

 

Perhaps the most complex aspect of Eda action relates to its role in shaping individual 

hair fibres. The majority of hairs in the mouse coat are of the zigzag type. These hairs 

are produced by the tertiary hair follicles and are bent at constriction sites present at 

intervals along the fibre. Somewhat paradoxically, loss of Eda function or transgenic 
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Eda expression both have a pronounced straightening effect on these hair fibres. It has 

been unclear whether this straightening effect is due to alteration of hair follicle 

identity during development or to a sustained requirement for Eda action in the 

mature zigzag follicle. The careful microscopic analysis reported by Cui et al. 

revealed that these straight hairs in Eda transgenic animals do carry regular 

constrictions, consistent with their possessing a true zigzag identity, but that bends fail 

to be introduced at these sites. The insertion of constrictions requires continuous Eda 

expression during fibre growth, but this study (Cui et al., 2009) implies that hair 

bending is an independent process requiring a very precise location, or perhaps dose, 

of Eda expression to produce the molecular asymmetries responsible for hair shaping 

(Hammerschmidt and Schlake, 2007).  

 

In all, Cui et al. have shown that Eda action defines appendage structure in a number 

of ways, acting prior to birth to enable the development of hair follicle types and then 

to modulate hair thickness and in the adult follicle influencing hair fibre shape. Thus 

the dose and timing of EDA signalling has significant effects on the external 

phenotype and genetic tuning of this system is likely to account for some of the 

extraordinary diversity of cutaneous appendages seen in humans and other 

vertebrates. 
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Figure Legend 

 

Figure 1.  The influence of Ectodysplasin at different stages of ectodermal appendage 

development. Acquisition of appendage cell fate is indicated by altered cell shading. 

Developmental stages with an absolute requirement for Eda to produce a functioning 

organ are indicated by a solid line, while an Eda influence that is not essential for 

organ production is indicated by a dashed line. Red/blue block arrows indicate 

epithelial-mesenchymal interactions in the hair follicle primordium. Formation of a 

dermal papilla in hair follicle development coincides with independence from Eda 

action. The stage in sweat gland development at which Eda withdrawal is tolerated is 

unknown. 
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