1,197 research outputs found

    Effect of DBM on the healing of intramembranous bone graft

    Get PDF
    published_or_final_versio

    Pattern of angiogenesis in the healing of composite intramembranous bone and demineralized bone matrix

    Get PDF
    Abstract no. 3133published_or_final_versio

    The effect of demineralized bone matrix on the healing of intramembranous bone grafts in rabbit skull defects

    Get PDF
    A clinical dilemma exists regarding the type of bone that should be used to replace diseased or traumatized osseous tissue. Oral, plastic, and orthopedic surgeons normally implant viable mineralized endochondral (EC) autografts or demineralized EC allografts. A few clinicians have recognized the disadvantages of using EC bone in craniofacial surgery and advocated the replacement of intramembranous (IM) bone with healthy IM bone. However, controversy and uncertainty surround our understanding of these matrices to induce bone formation. Recent studies have advocated the use of other materials with osteoinductive properties, such as demineralized bone matrix (DBM). The proposed delivery system used in this study included IM bone grafts, DBM, and fixation of the IM bone graft. The purpose of this work was to gain further insights into the mechanism of healing of IM bone, in both the presence and the absence of DBM, and to compare the healing of IM bone grafts with that of DBM alone. Critical-sized (10 × 5 mm), full-thickness bony defects in rabbit parietal bone, devoid of periosteum, were filled with IM bone graft (mandible) alone, demineralized cortical bone matrix (DBM) alone, or combined DBM-IM bone graft, or were left unfilled. Histologic changes were examined 14 days later. The IM bone graft healed through IM ossification with no intermediate cartilage stage. DBM and composite DBM-IM healed through an EC ossification with an intermediate cartilage stage. It is hypothesized that the role of the IM graft is to induce neovascularization into the defect site, and that the undifferentiated mesenchymal cells in the perivascular region of the new blood vessels are induced by the bone morphogenetic protein(s) in the DBM into bone-forming cells.published_or_final_versio

    Individually Frequency Tunable Dual- and Triple-band Filters in a Single Cavity

    Full text link
    © 2013 IEEE. This paper presents a new class of second-order individually and continuously tunable dual- and triple-band bandpass filters in a single metal cavity. Each passband is realized by two identical metal posts. These dual- and triple-band tunable filters are achieved by putting two or three identical sets of metal-post pair in a single metal cavity. Metal screws are co-designed as a part of the metal posts to control their insertion depth inside the cavity. In this way, the resonant frequencies can be continuously controlled and designed at the desired frequency bands. Moreover, the distance between the two metal posts in a post pair can be freely tuned. Thus, the external quality factor (Qe) and coupling coefficient (k) between the adjacent modes can be easily adjusted to meet the specified requirement in synthesis design. At the bottom of the cavity, some grooves are used to extend the tunable frequency range and make the resonant frequency linearly varied with the height of the metal post. The center frequency of each passband can be independently tuned with a frequency range of 0.8-3.2 GHz and tunable ratio of 4. Finally, the continuously tunable dual- and triple-band bandpass filters prototypes with second order response are designed and fabricated, of which each passband can be individually tuned with a large tuning range

    Propagation of spiking regularity and double coherence resonance in feedforward networks

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    The recent establishment of North American H10 lineage influenza viruses in Australian wild waterfowl and the evolution of Australian avian influenza viruses

    Full text link
    Influenza A H10N7 virus with a hemagglutinin gene of North American origin was detected in Australian chickens and poultry abattoir workers in New South Wales, Australia, in 2010 and in chickens in Queensland, Australia, on a mixed chicken and domestic duck farm in 2012. We investigated their genomic origins by sequencing full and partial genomes of H10 viruses isolated from wild aquatic birds and poultry in Australia and analyzed them with all available avian influenza virus sequences from Oceania and representative viruses from North America and Eurasia. Our analysis showed that the H10N7 viruses isolated from poultry were similar to those that have been circulating since 2009 in Australian aquatic birds and that their initial transmission into Australia occurred during 2007 and 2008. The H10 viruses that appear to have developed endemicity in Australian wild aquatic birds were derived from several viruses circulating in waterfowl along various flyways. Their hemagglutinin gene was derived from aquatic birds in the western states of the United States, whereas the neuraminidase was closely related to that from viruses previously detected in waterfowl in Japan. The remaining genes were derived from Eurasian avian influenza virus lineages. Our analysis of virological data spanning 40 years in Oceania indicates that the long-term evolutionary dynamics of avian influenza viruses in Australia may be determined by climatic changes. The introduction and long-term persistence of avian influenza virus lineages were observed during periods with increased rainfall, whereas bottlenecks and extinction were observed during phases of widespread decreases in rainfall. These results extend our understanding of factors affecting the dynamics of avian influenza and provide important considerations for surveillance and disease control strategies. © 2013, American Society for Microbiology

    Rapid Detection and Subtyping of Human Influenza A Viruses and Reassortants by Pyrosequencing

    Get PDF
    Background: Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. Methodology/Principal Findings: A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. Conclusions/Significance: In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is mor
    corecore