151 research outputs found
Comparison of hyperpronation and supination‑flexion techniques in children presented to emergency department with painful pronation
Context: Radial head subluxation, also known as ‘pulled elbow’, ‘dislocated elbow’ or ‘nursemaid’s elbow’, is one of the most common upper extremity injuries in young children and a common reason to visit Emergency Department (ED).Aim: To compare supination of the wrist followed by flexion of the elbow (the traditional reduction technique) to hyperpronation of the wrist in the reduction of radial head subluxations (nursemaid’s elbow) maneuvers in children presented to ED with painful pronation and to determine which method is less painful by children.Settings and Design: This prospective randomize study involved a consecutive sampling of children between 1‑5 year old who were presented to the ED with painful pronation.Materials and Methods: The initial procedure was repeated if baseline functioning did not return 20 minutes after the initial reduction attempt. Failure of that technique 30 minutes after the initial reduction attempt resulted in a cross‑over to the alternate method of reduction.Statistical analysis used: Datas were analyzed using SPSS for Windows 16.0. Mean, standard deviation, independent samples t test, Chi‑square test, and paired t test were used in the assessment of pain scores before and after reduction.Results: When pain scores before and after reduction were compared between groups to determine which technique is less painful by children, no significant difference was found between groups.Conclusions: It was found that in the reduction of radial head subluxations, the hyperpronation technique is more effective in children who were presented to ED with painful pronation compared with supination‑flexion. However, there was no significant difference between these techniques in terms of pain.Key words: Child, emergency department, nursemaid’s elbow, pain, pulled elbo
Proceedings of the Salford Postgraduate Annual Research Conference (SPARC) 2011
These proceedings bring together a selection of papers from the 2011 Salford Postgraduate Annual Research Conference(SPARC). It includes papers from PhD students in the arts and social sciences, business, computing, science and engineering, education, environment, built environment and health sciences. Contributions from Salford researchers are published here alongside papers from students at the Universities of Anglia Ruskin, Birmingham City, Chester,De Montfort, Exeter, Leeds, Liverpool, Liverpool John Moores and Manchester
Annotations for Rule-Based Models
The chapter reviews the syntax to store machine-readable annotations and
describes the mapping between rule-based modelling entities (e.g., agents and
rules) and these annotations. In particular, we review an annotation framework
and the associated guidelines for annotating rule-based models of molecular
interactions, encoded in the commonly used Kappa and BioNetGen languages, and
present prototypes that can be used to extract and query the annotations. An
ontology is used to annotate models and facilitate their description
General Aspects of Tree Level Gauge Mediation
Tree level gauge mediation (TGM) may be considered as the simplest way to
communicate supersymmetry breaking: through the tree level renormalizable
exchange of heavy gauge messengers. We study its general structure, in
particular the general form of tree level sfermion masses and of one loop, but
enhanced, gaugino masses. This allows us to set up general guidelines for model
building and to identify the hypotheses underlying the phenomenological
predictions. In the context of models based on the "minimal" gauge group
SO(10), we show that only two "pure" embeddings of the MSSM fields are possible
using representations, each of them leading to specific predictions
for the ratios of family universal sfermion masses at the GUT scale,
or (in SU(5)
notation). These ratios are determined by group factors and are peculiar enough
to make this scheme testable at the LHC. We also discuss three possible
approaches to the -problem, one of them distinctive of TGM.Comment: 37 pages, 2 figure
CtIP tetramer assembly is required for DNA-end resection and repair.
Mammalian CtIP protein has major roles in DNA double-strand break (DSB) repair. Although it is well established that CtIP promotes DNA-end resection in preparation for homology-dependent DSB repair, the molecular basis for this function has remained unknown. Here we show by biophysical and X-ray crystallographic analyses that the N-terminal domain of human CtIP exists as a stable homotetramer. Tetramerization results from interlocking interactions between the N-terminal extensions of CtIP's coiled-coil region, which lead to a 'dimer-of-dimers' architecture. Through interrogation of the CtIP structure, we identify a point mutation that abolishes tetramerization of the N-terminal domain while preserving dimerization in vitro. Notably, we establish that this mutation abrogates CtIP oligomer assembly in cells, thus leading to strong defects in DNA-end resection and gene conversion. These findings indicate that the CtIP tetramer architecture described here is essential for effective DSB repair by homologous recombination.We thank M. Kilkenny for help with the collection of X-ray diffraction data,
A. Sharff and P. Keller for help with X-ray data processing and J.D. Maman for
assistance with SEC-MALS. This work was supported by a Wellcome Trust Senior
Research Fellowship award in basic biomedical sciences (L.P.), an Isaac Newton
Trust research grant (L.P. and O.R.D.) and a Cambridge Overseas Trust PhD
studentship (M.D.S.). Research in the laboratory of S.P.J. is funded by Cancer
Research UK (CRUK; programme grant C6/A11224), the European Research
Council and the European Community Seventh Framework Programme
(grant agreement no. HEALTH-F2-2010-259893 (DDResponse)). Core funding
is provided by Cancer Research UK (C6946/A14492) and the Wellcome
Trust (WT092096). S.P.J. receives his salary from the University of Cambridge,
supplemented by CRUK. J.V.F. is funded by Cancer Research UK programme
grant C6/A11224 and the Ataxia Telangiectasia Society. R.B. and J.C. are funded by
Cancer Research UK programme grant C6/A11224. Y.G. and M.D. are funded by
the European Research Council grant DDREAM.This is the accepted manuscript of a paper published in Nature Structural & Molecular Biology, 22, 150–157 (2015) doi: 10.1038/nsmb.293
Sensory Integration Regulating Male Courtship Behavior in Drosophila
The courtship behavior of Drosophila melanogaster serves as an excellent model system to study how complex innate behaviors are controlled by the nervous system. To understand how the underlying neural network controls this behavior, it is not sufficient to unravel its architecture, but also crucial to decipher its logic. By systematic analysis of how variations in sensory inputs alter the courtship behavior of a naïve male in the single-choice courtship paradigm, we derive a model describing the logic of the network that integrates the various sensory stimuli and elicits this complex innate behavior. This approach and the model derived from it distinguish (i) between initiation and maintenance of courtship, (ii) between courtship in daylight and in the dark, where the male uses a scanning strategy to retrieve the decamping female, and (iii) between courtship towards receptive virgin females and mature males. The last distinction demonstrates that sexual orientation of the courting male, in the absence of discriminatory visual cues, depends on the integration of gustatory and behavioral feedback inputs, but not on olfactory signals from the courted animal. The model will complement studies on the connectivity and intrinsic properties of the neurons forming the circuitry that regulates male courtship behavior
MicroRNAs MiR-17, MiR-20a, and MiR-106b Act in Concert to Modulate E2F Activity on Cell Cycle Arrest during Neuronal Lineage Differentiation of USSC
MicroRNAs are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC) was analyzed./M transition. Most strikingly, miR-17, -20a, and -106b were found to promote cell proliferation by increasing the intracellular activity of E2F transcription factors, despite the fact that miR-17, -20a, and -106b directly target the transcripts that encode for this protein family./S transition
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif
Ustilago maydis is a biotrophic fungus causing corn smut disease in maize. The secreted effector protein Pit2 is an inhibitor of papain-like cysteine proteases (PLCPs) essential for virulence. Pit2 inhibitory function relies on a conserved 14 amino acids motif (PID14). Here we show that synthetic PID14 peptides act more efficiently as PLCP inhibitors than the full-length Pit2 effector. Mass spectrometry shows processing of Pit2 by maize PLCPs, which releases an inhibitory core motif from the PID14 sequence. Mutational analysis demonstrates that two conserved residues are essential for Pit2 function. We propose that the Pit2 effector functions as a substrate mimicking molecule: Pit2 is a suitable substrate for apoplastic PLCPs and its processing releases the embedded inhibitor peptide, which in turn blocks PLCPs to modulate host immunity. Remarkably, the PID14 core motif is present in several plant associated fungi and bacteria, indicating the existence of a conserved microbial inhibitor of proteases (cMIP)
- …