733 research outputs found
Multi-wavelength observations of 3FGL J2039.6-5618: a candidate redback millisecond pulsar
We present multi-wavelength observations of the unassociated gamma-ray source
3FGL J2039.6-5618 detected by the Fermi Large Area Telescope. The source
gamma-ray properties suggest that it is a pulsar, most likely a millisecond
pulsar, for which neither radio nor -ray pulsations have been detected
yet. We observed 3FGL J2039.6-5618 with XMM-Newton and discovered several
candidate X-ray counterparts within/close to the gamma-ray error box. The
brightest of these X-ray sources is variable with a period of 0.22450.0081
d. Its X-ray spectrum can be described by a power law with photon index
, and hydrogen column density cm, which gives an unabsorbed 0.3--10 keV X-ray flux of erg cm s. Observations with the Gamma-Ray Burst
Optical/Near-Infrared Detector (GROND) discovered an optical counterpart to
this X-ray source, with a time-average magnitude . The counterpart
features a flux modulation with a period of 0.227480.00043 d that
coincides, within the errors, with that of the X-ray source, confirming the
association based on the positional coincidence. We interpret the observed
X-ray/optical periodicity as the orbital period of a close binary system where
one of the two members is a neutron star. The light curve profile of the
companion star, with two asymmetric peaks, suggests that the optical emission
comes from two regions at different temperatures on its tidally-distorted
surface. Based upon its X-ray and optical properties, we consider this source
as the most likely X-ray counterpart to 3FGL J2039.6-5618, which we propose to
be a new redback system.Comment: 35 pages, 8 figures, accepted for publication on Astrophysical
Journa
Possible coupling between climatically induced lake level change, volcanic eruptions and seismotectonic activation in the Rukwa-Rungwe-Nyasa rift, SW Tanzania
The Rukwa rift basin is presently a closed hydrogeological depression containing a shallow lake (max 20 me deep) with its surface at an altitude around 810 m above sea level. Lacustrine terraces and paleo-shorelines are known up to 980 m above sea level, an altitude at which it reach the overflow sill towards Lake Tanganyika. Both Lakes Tanganyika and Nyasa (Malawi) are presently overflowing, but as their lake level fluctuates, they have been disconnected from their outlet in the recent past. High resolution seismic profiling in both Lakes Rukwa and Malawi has show the presence of active fault systems underneath the lake floor. Some of these fault systems appear to have had a cyclic activity, with alternating periods of high tectonic activity/sedimentation and periods of tectonic quiescence. The accommodation zone between Lake Rukwa and Nyasa is occupied by the Rungwe volcanic Province, with the Ngozi, Rungwe and Kiejo volcanoes presenting signs of recent volcanic activity. The Rungwe Province is cross-cut by several directions of faults, which clearly control the location of the volcanic vents.In our work, we reviewed the available data on recent (Late Pleistocene â Holocene) volcanic eruptions, in the Rungwe area itself, in the drill cores from the surrounding lakes and from aerial observations up to 300 km away from the Rungwe Province. We performed morphotectonic and paleoseismic investigations of the Kanda fault, a major normal fault between lakes Rukwa and Tanganyika. We investigated lacustrine deposits of the Rukwa basin corresponding to the two last cycles of high lake level. The chronological framework was established using 30 new radiocarbon dating and the most prominent volcanic tephra layers were used as a reference in the correlations. The results are still preliminary, but a good correlation already appear between climatically induced lake level change (in Lake Rukwa), seismo-tectonic activation of the regional fault network (underneath Lake Rukwa and the Kanda fault between Lakes Rukwa and Tanganyika) and the timing of the recent strong volcanic eruptions in the Rungwe Volcanic Province since the last 40.000 years. This relation is explained taking into account that Lake Rukwa is very sensitive to climate change as it occupies a flat depression and its overflow outlet is 180 m above its present-day level. Its lake level rises rapidly when the climate becomes more humid as it was the case during the Last Glacial Maximum and during the Younger Dryas event. Increase in lake level means increasing of the load in the basin and perturbation of the ambient tectonic stresses. In most of the Rukwa rift, the tectonic stress is of extensional (normal faulting) regime, with the maximum principal stress axis (sigma 1) subvertical. In these conditions, increasing the vertical load will increase the shear stress on the existing normal faults, triggering (seismogenic) normal faulting deformation. As the architecture of the active volcanoes in the Rungwe Province is tectonically controlled, activation of the faults, together with a greater pressure of water in the tectonic discontinuities are likely to trigger large volcanic eruptions, strongly explosive
Primorsky rift shoulder uplift and migration of Lake Baikal outlet: effects of rifting on surface processes
The Primorsky range developed along the northwestern side of the Lake Baikal rift basin, at the margin of the Siberian Platform. Morphological investigations revealed that the outlet of Lake Baikal changed several times since the Mid-Pleistocene. Lake Baikal was previously connected to the Lena River across the Primorsky Range. Analysis of digital topography suggests that this connection migrated southwestwards along the trend of the range, as the result of more intense uplift of the northeastern part of the range, relative to the lake level. This can be due to either more rapid vertical movements or an earlier initiation of vertical movements. These vertical movements are controlled by the Late Quaternary development of the Baikal rift basin, and also reflect the diachronous long-term evolution of the individual subbasins. In particular, the uplift of the Primorsky Range is accommodated by the activity of the border faults of the rift basins. The linking modes of the different fault segments also played a major role in the development of the sub-basins in Central Baikal. Recent surface deformation affected also the more internal part of the Siberian Plate, controlling its morphology. A belt of shallow active sedimentary basins formed along the external flank of the Primorsky Range. The more internal part of the Siberian platform was deformed in a large domal uplift (the Lena Dome), with its summits lying 1000 m above the basal altitude of the platform. Formation of the Lena Dome might have had a major role in the development of the Kovykta gas field
Increased 5-hydroxymethylation levels in the sub ventricular zone of the Alzheimer's brain
© 2016 The Authors. The subventricular zone (SVZ) is a site of neurogenesis in the aging brain, and epigenetic mechanisms have been implicated in regulating the "normal" distribution of new nerve cells into the existing cellular milieu. In a case-control study of human primary SVZ cultures and fixed tissue from the same individuals, we have found significant increases in DNA hydroxymethylation levels in the SVZ of Alzheimer's disease patients compared with nondiseased control subjects. We show that this increase in hydroxymethylation directly correlates to an increase in cellular proliferation in Alzheimer's disease precursor cells, which implicates the hydroxymethylation tag to a higher degree of cellular proliferation
Gamma-Ray Bursts Trace UV Metrics of Star Formation over 3 < z < 5
We present the first uniform treatment of long duration gamma-ray burst (GRB)
host galaxy detections and upper limits over the redshift range 3<z<5, a key
epoch for observational and theoretical efforts to understand the processes,
environments, and consequences of early cosmic star formation. We contribute
deep imaging observations of 13 GRB positions yielding the discovery of eight
new host galaxies. We use this dataset in tandem with previously published
observations of 31 further GRB positions to estimate or constrain the host
galaxy rest-frame ultraviolet (UV; 1600 A) absolute magnitudes M_UV. We then
use the combined set of 44 M_UV estimates and limits to construct the M_UV
luminosity function (LF) for GRB host galaxies over 3<z<5 and compare it to
expectations from Lyman break galaxy (LBG) photometric surveys with the Hubble
Space Telescope. Adopting standard prescriptions for the luminosity dependence
of galaxy dust obscuration (and hence, total star formation rate), we find that
our LF is compatible with LBG observations over a factor of 600x in host
luminosity, from M_UV = -22.5 mag to >-15.6 mag, and with extrapolations of the
assumed Schechter-type LF well beyond this range. We review proposed
astrophysical and observational biases for our sample, and find they are for
the most part minimal. We therefore conclude, as the simplest interpretation of
our results, that GRBs successfully trace UV metrics of cosmic star formation
over the range 3<z<5. Our findings suggest GRBs are providing an accurate
picture of star formation processes from z ~3 out to the highest redshifts.Comment: publ. ApJ 809 (2015) 76; 14 figures; replacement to reflect changes
to v1 (rounding effects, diff. LF from Bouwens
Super-solar metallicity at the position of the ultra-long GRB130925A
Over the last decade there has been immense progress in the follow-up of
short and long GRBs, resulting in a significant rise in the detection rate of
X-ray and optical afterglows, in the determination of GRB redshifts, and of the
identification of the underlying host galaxies. Nevertheless, our theoretical
understanding on the progenitors and central engines powering these vast
explosions is lagging behind, and a newly identified class of `ultra-long' GRBs
has fuelled speculation on the existence of a new channel of GRB formation. In
this paper we present high signal-to-noise X-shooter observations of the host
galaxy of GRB130925A, which is the fourth unambiguously identified ultra-long
GRB, with prompt gamma-ray emission detected for ~20ks. The GRB line of sight
was close to the host galaxy nucleus, and our spectroscopic observations cover
both this region along the bulge/disk of the galaxy, in addition to a bright
star-forming region within the outskirts of the galaxy. From our broad
wavelength coverage we obtain accurate metallicity and dust-extinction
measurements at both the galaxy nucleus, and an outer star-forming region, and
measure a super-solar metallicity at both locations, placing this galaxy within
the 10-20% most metal-rich GRB host galaxies. Such a high metal enrichment has
implications on the progenitor models of both long and ultra-long GRBs,
although the edge-on orientation of the host galaxy does not allow us to rule
out a large metallicity variation along our line of sight. The spatially
resolved spectroscopic data presented in this paper offer important insight
into variations in the metal and dust abundance within GRB host galaxies. They
also illustrate the need for IFU observations on a larger sample of GRB host
galaxies at varies metallicities to provide a more quantitative view on the
relation between the GRB circumburst and the galaxy-whole properties.Comment: 9 pages, 3 figures, A&A in press, matches published versio
Intramontane lacustrine basins in the Siberian Altai: recorders of Cenozoic intracontinental tectonic and climatic events
The Altai Mountains are part of the vast intracontinental Central Asian orogenic system that formed during the Cenozoic as a distal effect of continued indentation of the Indian plate into the Eurasian continent. In the Siberian part of the Altai Mountains there is ample evidence to suggest that the pre-Cenozoic structural fabric of its basement is a controlling factor in the Cenozoic deformation and development of this intracontinental orogen. We give evidence that important Paleozoic fault zones were reactivated during the Cenozoic, particularly the Late Cenozoic and play a key role in the formation, evolution and current morphology of the Siberian Altai Mountains. Some of these faults are still active and recent and historic movements along them have triggered large seismic events. Late Cenozoic reactivation was expressed as pure thrust, oblique thrust to pure strike-slip faulting, resulting in an overall transpressive tectonic regime. In some cases, as for the graben basin of Lake Teletskoye, local, pure extensional stresses are responsible for its formation as we show in this contribution. Various other intramontane, tectonic basins developed. Some of these are very recent structures (the Teletskoye Basin) and are Pleistocene in age or younger, others have a prolonged history and contain a relatively complete Cenozoic sedimentary section, with evidence of Late Mesozoic precursor basins (Chuya Basin, Dzhulukul Basin). Some of these exhibit indications of marine incursions, but the basins are predominantly continental. The development of these basins is clearly associated with the location and Cenozoic reactivation of aforementioned long-lived fault zones in the Altai tectonic assemblage. Many of these basins accommodated fresh water lakes during their evolution and some are still the site of contemporary mountain lakes. Their stratigraphy, as well as the sedimentary architecture and basin morphology is manifestly influenced by and progresses with the stages of (Late) Cenozoic intracontinental mountain building and erosive denudation of the growing mountain ranges. Together with the clastic sedimentary input and the provenance characteristics, the intramontane Altai basin deposits are affected by evolving climatic conditions. These conditions dictate the main mode of erosion and transport, influence the sedimentary facies and supply rate and create the framework for a specific biocoenosis signature found in the fossil record. Our contribution reviews the data obtained over the last years from a selection of intramontane lacustrine basins in the Siberian Altai Mountains. We direct our attention in particular to the Teletskoye basin, the Chuya-Kurai Basin and the Dzhulukul Basin. We combine sedimentologic-stratigraphic data with basin architecture and morphology, and with basement geochronologic-thermochronologic constraints (apatite fission-track, U/Pb and Ar-dating) in order to show the potential of these basins as recorders of Cenozoic tectonic and climatic events in relation with basement features. While for example the data obtained from the Chuya Basin yields a continuous Cenozoic picture of deformation and climatic evolution of the Altai area, data from the Teletskoye Basin zooms in with higher resolution on the Pleistocene to Recent history. In general, all data point towards intensifying tectonic reactivation and mountain building of the Siberian Altai Mountains since the Middle Cenozoic, with clear peak activity in the Pliocene to Recent. This is demonstrated by the molassetype deposits in these basins, and by thermochronologic constraints. This activity is ongoing and structural, (paleo)seismic, geomorphologic and sedimentologic data corroborates this. The lacustrine Altai basins provide a record for a more or less continuous progressive cooling and aridification of the Altai area during the Cenozoic as manifested in the pollen fossil assemblages found in the Altai sediments
Active tectonic deformation in Central Tanzania: the Manyara-Dodoma rift segment
In November 4, 2002, an earthquake of Mb = 5.5 struck Dodoma, the capital city of Tanzania, in Central Tanzania, in a portion of the Eastern East African Rift System with a weak topographic expression. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to at least the region of Dodoma, forming the âManyara-Dodoma rift segmentâ. The latter forms the southwards continuation of the Eastern Branch of the East African Rift System.The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the freshness of the fault scarps visible in the morphology, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent faults often reactivate older fault systems. The present-day stress inverted from earthquake focal mechanisms shows that the Manyara-Dodoma rift segment is presently subjected to an extensional stress field with a N080°E direction of horizontal principal extension. Under this stress field, the rift develops by (1) reactivation of the pre-existing tectonic planes of weakness, and (2) progressive development of a new fault system in a more N-S trend by the linkage of existing rift faults. This process started about 1.2 Ma ago and is still ongoing
Synthesis and characterisation of peroxypinic acids as proxies for highly oxygenated molecules (HOMs) in secondary organic aerosol
Peroxy acids were recently found to be involved in new particle formation in the atmosphere and could also substantially contribute towards particle toxicity. However, a lack of suitable analytical methods for the detection and characterisation of peroxy acids in the particle phase is currently hindering the quantitative investigation of their contribution to these important atmospheric processes. Further development of appropriate techniques and relevant standards is therefore urgently needed. In this study, we synthesised three peroxypinic acids, developed a liquid chromatography separation method and characterised them with tandem mass spectrometry. The observed fragmentation patterns clearly distinguish the different peroxypinic acids from both the acid and each other, showing several neutral losses previously already observed for other peroxy acids. Both monoperoxypinic acids were found to be present in secondary organic aerosol generated from ozonolysis of α-pinene in laboratory experiments. The yield of monoperoxypinic acid formation was not influenced by humidity. Monoperoxypinic acid quickly degrades on the filter, with about 60% lost within the first 5h. This fast degradation shows that time delays in traditional off-line analysis will likely lead to severe underestimates of peroxy compound concentrations in ambient particles.Sarah S. Steimer acknowledges funding
support from the Swiss National Science Foundation (project no.
162258). Funding by the European Research Council (ERC starting
grant 279405) and the European Unionâs Horizon 2020 research
and innovation programme through the EUROCHAMP-2020
Infrastructure Activity under grant agreement no. 730997 is
acknowledged
- âŠ