796 research outputs found

    Diffusive limits on the Penrose tiling

    Full text link
    In this paper random walks on the Penrose lattice are investigated. Heat kernel estimates and the invariance principle are shown

    Trapping in the random conductance model

    Full text link
    We consider random walks on Zd\Z^d among nearest-neighbor random conductances which are i.i.d., positive, bounded uniformly from above but whose support extends all the way to zero. Our focus is on the detailed properties of the paths of the random walk conditioned to return back to the starting point at time 2n2n. We show that in the situations when the heat kernel exhibits subdiffusive decay --- which is known to occur in dimensions d≄4d\ge4 --- the walk gets trapped for a time of order nn in a small spatial region. This shows that the strategy used earlier to infer subdiffusive lower bounds on the heat kernel in specific examples is in fact dominant. In addition, we settle a conjecture concerning the worst possible subdiffusive decay in four dimensions.Comment: 21 pages, version to appear in J. Statist. Phy

    Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions

    Get PDF
    International audienceWhile bidecadal climate variability has been evidenced in several North Atlantic paleoclimaterecords, its drivers remain poorly understood. Here we show that the subset of CMIP5historical climate simulations that produce such bidecadal variability exhibits a robustsynchronization, with a maximum in Atlantic Meridional Overturning Circulation (AMOC) 15years after the 1963 Agung eruption. The mechanisms at play involve salinity advection fromthe Arctic and explain the timing of Great Salinity Anomalies observed in the 1970s and the1990s. Simulations, as well as Greenland and Iceland paleoclimate records, indicate thatcoherent bidecadal cycles were excited following five Agung-like volcanic eruptions of the lastmillennium. Climate simulations and a conceptual model reveal that destructive interferencecaused by the Pinatubo 1991 eruption may have damped the observed decreasing trend of theAMOC in the 2000s. Our results imply a long-lasting climatic impact and predictabilityfollowing the next Agung-like eruption

    On the state dependency of fast feedback processes in (palaeo) climate sensitivity

    Get PDF
    Palaeo data have been frequently used to determine the equilibrium (Charney) climate sensitivity SaS^a, and - if slow feedback processes (e.g. land ice-albedo) are adequately taken into account - they indicate a similar range as estimates based on instrumental data and climate model results. Most studies implicitly assume the (fast) feedback processes to be independent of the background climate state, e.g., equally strong during warm and cold periods. Here we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a conceptual climate model for interpretation. Applying a new method to account for background state dependency, we find Sa=0.61±0.06S^a=0.61\pm0.06 K(Wm−2^{-2})−1^{-1} using the latest LGM temperature reconstruction and significantly lower climate sensitivity during glacial climates. Due to uncertainties in reconstructing the LGM temperature anomaly, SaS^a is estimated in the range Sa=0.55−0.95S^a=0.55-0.95 K(Wm−2^{-2})−1^{-1}.Comment: submitted to Geophysical Research Letter

    Anatomy of a Dansgaard-Oeschger warming transition: High-resolution analysis of the North Greenland Ice Core Project ice core

    Get PDF
    Large and abrupt temperature oscillations during the last glacial period, known as Dansgaard‐Oeschger (DO) events, are clearly observed in the Greenland ice core record. Here we present a new high‐resolution chemical (2 mm) and stable isotope (20 mm) record from the North Greenland Ice Core Project (NGRIP) ice core at the onset of one of the most prominent DO events of the last glacial, DO‐8, observed ∌38,000 years ago. The unique, subannual‐resolution NGRIP record provides a true sequence of change during a DO warming with detailed annual layer counting of very high depth resolution geochemical measurements used to determine the exact duration of the transition. The continental ions, indicative of long‐range atmospheric loading and dustiness from East Asia, are the first to change, followed by the snow accumulation, the moisture source conditions, and finally the atmospheric temperature in Greenland. The sequence of events shows that atmospheric and oceanic source and circulation changes preceded the DO warming by several years

    Polynomial Growth Harmonic Functions on Finitely Generated Abelian Groups

    Full text link
    In the present paper, we develop geometric analytic techniques on Cayley graphs of finitely generated abelian groups to study the polynomial growth harmonic functions. We develop a geometric analytic proof of the classical Heilbronn theorem and the recent Nayar theorem on polynomial growth harmonic functions on lattices \mathds{Z}^n that does not use a representation formula for harmonic functions. We also calculate the precise dimension of the space of polynomial growth harmonic functions on finitely generated abelian groups. While the Cayley graph not only depends on the abelian group, but also on the choice of a generating set, we find that this dimension depends only on the group itself.Comment: 15 pages, to appear in Ann. Global Anal. Geo

    Identification of the First Oomycete Mating-type Locus Sequence in the Grapevine Downy Mildew Pathogen, Plasmopara viticola

    Get PDF
    Mating types are self-incompatibility systems that promote outcrossing in plants, fungi, and oomycetes. Mating-type genes have been widely studied in plants and fungi but have yet to be identified in oomycetes, eukaryotic organisms closely related to brown algae that cause many destructive animal and plant diseases. We identified the mating-type locus of Plasmopara viticola, the oomycete responsible for grapevine downy mildew, one of the most damaging grapevine diseases worldwide. Using a genome-wide association approach, we identified a 570-kb repeat-rich non-recombining region controlling mating types, with two highly divergent alleles. We showed that one mating type was homozygous, whereas the other was heterozygous at this locus. The mating-type locus encompassed 40 genes, including one encoding a putative hormone receptor. Functional studies will, however, be required to validate the function of these genes and find the actual determinants of mating type. Our findings have fundamental implications for our understanding of the evolution of mating types, as they reveal a unique determinism involving an asymmetry of heterozygosity, as in sex chromosomes and unlike other mating-type systems. This identification of the mating-type locus in such an economically important crop pathogen also has applied implications, as outcrossing facilitates rapid evolution and resistance to harsh environmental conditions

    Target atmospheric CO2: Supporting material

    Get PDF
    Additional material supporting the article "Target atmospheric CO2: Where should humanity aim?"Comment: 27 pages, 21 figures; final version accepted by Open Science Atmospheric Journal; main article separately submitted to arXiv as "Target atmospheric CO2: Where should humanity aim?", arxiv:0804.112
    • 

    corecore