48 research outputs found

    Hepatic Xenobiotic Metabolizing Enzyme and Transporter Gene Expression through the Life Stages of the Mouse

    Get PDF
    Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species.Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs was observed at early (GD19, PND7) and to a lesser extent, later life stages (18 and 24 months). A number of female-specific XMETs exhibited a spike in expression centered at PND7.The analysis revealed dramatic differences in the expression of the XMETs, especially in the fetus and neonate that are partially dependent on gender-dependent factors. XMET expression can be used to predict life stage-specific responses to environmental chemicals and drugs

    The role of SHP/REV-ERBα/CYP4A axis in the pathogenesis of alcohol-associated liver disease

    Get PDF
    Alcohol-associated liver disease (ALD) represents a spectrum of histopathological changes, including alcoholic steatosis, steatohepatitis, and cirrhosis. One of the early responses to excessive alcohol consumption is lipid accumulation in the hepatocytes. Lipid ω-hydroxylation of medium- and long-chain fatty acid metabolized by the cytochrome P450 4A (CYP4A) family is an alternative pathway for fatty acid metabolism. The molecular mechanisms of CYP4A in ALD pathogenesis have not been elucidated. In this study, WT and Shp-/- mice were fed with a modified ethanol-binge, National Institute on Alcohol Abuse and Alcoholism model (10 days of ethanol feeding plus single binge). Liver tissues were collected every 6 hours for 24 hours and analyzed using RNA-Seq. The effects of REV-ERBα agonist (SR9009, 100 mg/kg/d) or CYP4A antagonist (HET0016, 5 mg/kg/d) in ethanol-fed mice were also evaluated. We found that hepatic Cyp4a10 and Cyp4a14 expression were significantly upregulated in WT mice, but not in Shp-/- mice, fed with ethanol. ChIP quantitative PCR and promoter assay revealed that REV-ERBα is the transcriptional repressor of Cyp4a10 and Cyp4a14. Rev-Erbα-/- hepatocytes had a marked induction of both Cyp4a genes and lipid accumulation. REV-ERBα agonist SR9009 or CYP4A antagonist HET0016 attenuated Cyp4a induction by ethanol and prevented alcohol-induced steatosis. Here, we have identified a role for the SHP/REV-ERBα/CYP4A axis in the pathogenesis of ALD. Our data also suggest REV-ERBα or CYP4A as the potential therapeutic targets for ALD

    Impact of life stage and duration of exposure on arsenic-induced proliferative lesions and neoplasia in C3H mice

    Get PDF
    Epidemiological studies suggest that chronic exposure to inorganic arsenic is associated with cancer of the skin, urinary bladder and lung as well as the kidney and liver. Previous experimental studies have demonstrated increased incidence of liver, lung, ovary, and uterine tumors in mice exposed to 85 ppm (∼8 mg/kg) inorganic arsenic during gestation. To further characterize age susceptibility to arsenic carcinogenesis we administered 85 ppm inorganic arsenic in drinking water to C3H mice during gestation, prior to pubescence and post-pubescence to compare proliferative lesion and tumor outcomes over a one-year exposure period. Inorganic arsenic significantly increased the incidence of hyperplasia in urinary bladder (48%) and oviduct (36%) in female mice exposed prior to pubescence (beginning on postnatal day 21 and extending through one year) compared to control mice (19 and 5%, respectively). Arsenic also increased the incidence of hyperplasia in urinary bladder (28%) of female mice continuously exposed to arsenic (beginning on gestation day 8 and extending though one year) compared to gestation only exposed mice (0%). In contrast, inorganic arsenic significantly decreased the incidence of tumors in liver (0%) and adrenal glands (0%) of male mice continuously exposed from gestation through one year, as compared to levels in control (30 and 65%, respectively) and gestation only (33 and 55%, respectively) exposed mice. Together, these results suggest that continuous inorganic arsenic exposure at 85 ppm from gestation through one year increases the incidence and severity of urogenital proliferative lesions in female mice and decreases the incidence of liver and adrenal tumors in male mice. The paradoxical nature of these effects may be related to altered lipid metabolism, the effective dose in each target organ, and/or the shorter one-year observational period

    Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.

    Get PDF
    Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells

    RNA-Sequencing Analysis of 5' Capped RNAs Identifies Many New Differentially Expressed Genes in Acute Hepatitis C Virus Infection

    Get PDF
    We describe the first report of RNA sequencing of 5' capped (Pol II) RNAs isolated from acutely hepatitis C virus (HCV) infected Huh 7.5 cells that provides a general approach to identifying differentially expressed annotated and unannotated genes that participate in viral-host interactions. We identified 100, 684, and 1,844 significantly differentially expressed annotated genes in acutely infected proliferative Huh 7.5 cells at 6, 48, and 72 hours, respectively (fold change ≥ 1.5 and Bonferroni adjusted p-values < 0.05). Most of the differentially expressed genes (>80%) and biological pathways (such as adipocytokine, Notch, Hedgehog and NOD-like receptor signaling) were not identified by previous gene array studies. These genes are critical components of host immune, inflammatory and oncogenic pathways and provide new information regarding changes that may benefit the virus or mediate HCV induced pathology. RNAi knockdown studies of newly identified highly upregulated FUT1 and KLHDC7B genes provide evidence that their gene products regulate and facilitate HCV replication in hepatocytes. Our approach also identified novel Pol II unannotated transcripts that were upregulated. Results further identify new pathways that regulate HCV replication in hepatocytes and suggest that our approach will have general applications in studying viral-host interactions in model systems and clinical biospecimens

    Metabolic and morphological analyses of colon tumor susceptibility: A strain and species-related comparison

    No full text
    A tumor susceptibility phenotype to the organotropic colon carcinogen 1,2-dimethylhydrazine (DMH) has been defined in inbred mice. DMH is an indirect-acting procarcinogen requiring metabolic activation. In the following studies, we examine the hypothesis that differential responsiveness to DMH, and its direct metabolite, azoxymethane (AOM), depend on the relative levels of a panel of metabolic enzymes that account for DMH activation. Among the enzymes examined, cytochrome P450 2e1 (Cyp2e1) and alcohol dehydrogenase (Adh) levels were similar in the livers and colons of both tumor susceptible (SWR/J) and resistant (AKR/J) mice. Glutathione S-transferase (GST) activity, important in the detoxification of electrophiles generated by carcinogen metabolism, was significantly increased (1.8-fold) in the colons of SWR mice and in the livers (1.4-fold) of AKR mice following DMH treatment. In contrast, GST-Yp, a highly expressed GST isoform in mouse colon, was reduced by 40% in the SWR colon as measured by immunoreactive protein. To directly test the relative capacity of liver and colon Adh to activate the proximate mutagenic metabolite of DMH, mouse cytosols were incubated with methylazoxymethanol (MAM). Neither AKR nor SWR cytosols metabolized MAM, although under identical assay conditions rat cytosols effectively metabolized MAM as previously reported. Finally, the possibility was examined that tumor multiplicity is dependent on the pool size of precancerous cells within the colonic epithelium. In addition to SWR and AKR, tumor susceptible strain A mice were repetitively administered AOM and examined for aberrant crypt foci (ACF), a precancerous lesion that can be visualized directly in methylene blue-stained whole colon mounts. SWR and strain A mice had a higher frequency of ACF (15 and 32 per cm colon, respectively) than AKR (5 per cm). In addition, a significant percentage (20 and 35%) of ACF were classified as large (5({\ge}5 crypts per foci) in the sensitive strains, compared with less than 4% in AKR. Taken together, these findings suggest that tumor resistant AKR mice are able to activate procarcinogens like AOM, and that factors that govern resistance to AOM, affect either the rate of ACF formation or the regression of these lesions within the colonic epithelium.

    Diallyl sulfide enhances azoxymethane-induced preneoplasia in Fischer 344 rat colon

    No full text
    Azoxymethane (AOM) is an indirect-acting colon carcinogen that produces a high incidence of precancerous lesions, referred to as aberrant crypt foci (ACF), in rats. This study was undertaken to determine whether high dose gavage administration of the cytochrome P-450 2E1 (CYP2E1) inhibitor and chemopreventive agent, diallyl sulfide, would reduce the incidence and severity of ACF formation in the distal colons of AOM-treated Fischer 344 rats. Seven-week-old male rats received 150 or 50 mg/kg diallyl sulfide by gavage 24 and 2 h prior to two weekly i.p. injections of AOM (20 mg/kg). Ten weeks after the last injection of AOM the rats were sacrificed and the colons removed and stained with 0.2% methylene blue. ACF were visualized using stereomicroscopy. Rats pretreated with diallyl sulfide exhibited a significant increase in the number of ACF/cm in the distal colon compared with rats receiving AOM alone. This increase in ACF number was seen in ACF of all sizes. To examine the effects of diallyl sulfide on the initiation stage of AOM-induced carcinogenesis, mutations in the K-ras proto-oncogene were also investigated. ACF and normal appearing colonic mucosa (0.2-0.5 mm(3)) were microdissected for subsequent PCR-RFLP analysis of a codon 12 (GGT-GGA) activating mutation in the K-ras gene. Greater than 90% of ACF from AOM-treated animals, regardless of diallyl sulfide treatment, exhibited activating K-rns mutations. K-ras mutations were also detected in normal appearing mucosa of AOM-treated animals, although at a lesser frequency (15-35%). These studies demonstrate that diallyl sulfide given in large gavage doses enhances AOM-induced preneoplasia in rats and suggests that diallyl sulfide may alter the disposition of AOM intermediates and/or enhance colonic promotional activity in the rat. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved
    corecore