344 research outputs found

    Uticaj pentobarbitala i pentilenetetrazola na nivo azot oksida u frontalnom korteksu pacova

    Get PDF
    Levels of nitric oxide (NO) in the rats frontal cortex were continuously monitored before and after intraperitoneal administration of an antiepileptic drug-pentobarbital (20 and 40 mg/kg) or convulsant drug - pentylenetetrazol (50 mg/kg). Pentobarbital decreased the levels of NO in a dose dependent manner However, NO levels had a tendency to increase following the administration of pentylenetetrazol. It is suggested that central NO participates in the modulation of neuronal excitability, supporting the idea that NO is an important excitatory factor involved in the regulation of seizure susceptibility. Also, our results on anaesthetized rats suggests that endogenous NO may be involved in the mechanism of action of antiepileptic and analeptic drugs and this further suggest that NO levels in the human brain may decrease during antiepileptic therapy and increase during epileptic attacks or administration of excitatory drugs. The aim of the present study was to determine the possible role of NO levels in the brain during neuronal excitability and seizures.Nivo azot oksida (NO) u frontalnom korteksu pacova meren je kontinuirano kako pre, tako i nakon intraperitonealne primene antiepileptika pentobarbitala (u dozi od 20 i 40 mg/kg) ili konvulzivnog agensa pentilenetetrazola (u dozi od 50 mg/kg). Rezultati ovih eksperimenta su ukazali da pentobarbital smanjuje nivo NO u frontalnom korteksu pacova, dok koncentracija NO ima tendeciju rasta nakon primene pentilenetetrazola. Osim toga, dokazano je da endogeni NO ima važnu ekscitatornu ulogu u centralnim mehanizmima nastanka epilepsije. Takođe, naši rezultati su ukazali da kod anestetisanih životinja endogeni nivo NO ima uticaja na dejstvo kako antikonvulzivnih, tako i prokonvulzivnih lekova. Nivo NO u mozgu pacova je bio snižen tokom terapije antiepilepticima, a povišen tokom epileptičkih napada ili primene lekova iz grupe centralnih stimulansa

    Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride

    Get PDF
    Gα subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T. atroviride is not publicly available yet, we carried out an in silico exploration of the genome database of the close relative T. reesei. Twenty genes encoding putative GPCRs distributed over eight classes and additional 35 proteins similar to the Magnaporthe grisea PTH11 receptor were identified. Subsequently, four T. atroviride GPCR-encoding genes were isolated and affliated to the cAMP receptor-like family by phylogenetic and topological analyses. All four genes showed lowest expression on glycerol and highest mRNA levels upon carbon starvation. Transcription of gpr3 and gpr4 responded to exogenously added cAMP and the shift from liquid to solid media. gpr3 mRNA levels also responded to the presence of fungal hyphae or cellulose membranes. Further characterisation of mutants bearing a gpr1-silencing construct revealed that Gpr1 is essential for vegetative growth, conidiation and conidial germination. Four genes encoding the first GPCRs described in Trichoderma were isolated and their expression characterized. At least one of these GPCRs is important for several cellular processes, supporting the fundamental role of G protein signalling in this fungus

    An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles

    Get PDF
    Extracellular vesicles (EV) are membranous particles secreted by all cells and found in body fluids. Established EV contents include a variety of RNA species, proteins, lipids and metabolites that are considered to reflect the physiological status of their parental cells. However, to date, little is known about cell-type enriched EV cargo in complex EV mixtures, especially in urine. To test whether EV secretion from distinct human kidney cells in culture differ and can recapitulate findings in normal urine, we comprehensively analysed EV components, (particularly miRNAs, long RNAs and protein) from conditionally immortalised human kidney cell lines (podocyte, glomerular endothelial, mesangial and proximal tubular cells) and compared to EV secreted in human urine. EV from cell culture media derived from immortalised kidney cells were isolated by hydrostatic filtration dialysis (HFD) and characterised by electron microscopy (EM), nanoparticle tracking analysis (NTA) and Western blotting (WB). RNA was isolated from EV and subjected to miRNA and RNA sequencing and proteins were profiled by tandem mass tag proteomics. Representative sets of EV miRNAs, RNAs and proteins were detected in each cell type and compared to human urinary EV isolates (uEV), EV cargo database, kidney biopsy bulk RNA sequencing and proteomics, and single-cell transcriptomics. This revealed that a high proportion of the in vitro EV signatures were also found in in vivo datasets. Thus, highlighting the robustness of our in vitro model and showing that this approach enables the dissection of cell type specific EV cargo in biofluids and the potential identification of cell-type specific EV biomarkers of kidney disease.Peer reviewe

    Site-directed mutagenesis of conserved inverted repeat sequences in the xylanase C promoter region from Streptomyces sp EC3

    Full text link
    Streptomyces sp. EC3, a strain which was originally isolated from cattle manure compost, was shown to possess a strong xylanolytic activity. One of the genes responsible for this activity, xlnC, encodes a secreted xylanase. In the native strain, as in the heterologous host S. lividans, expression of xlnC was detectable in the presence of xylan but not in the presence of glucose. Induction by xylan was shown to take place at the transcriptional level. The transcriptional start site of xlnC was mapped and likely -35 (5'-TTGACA-3') and -10 (5'-GAGAAC-3') motifs were identified. In order to localise putative conserved regulatory sequences, the promoter regions of xylanase-encoding genes from various Streptomyces species were aligned. This alignment revealed the existence of three sets of quite well conserved palindromic AT rich sequences called boxes 1, 2 and 3. Box 3 (5'-CGAAA N TTTCG-3') is the farthest away from the promoter region (150-200 bp). A shorter version of this palindrome (5'-GAAA NN TTTC-3') or (5'-CGAAA-3') constitutes box 1, which is located just upstream of the putative -35 promoter sequence. Box 2, located 5-7 bp upstream of box 1, comprises a shorter palindrome than box 3, with inverted polarity [5'-(G/C)TTTC (N) GAAA(G/C)-3']. The putative regulatory role of the conserved inverted repeats in boxes 2 and 3 in the promoter region of the xlnC gene from Streptomyces sp. EC3, was assessed. These boxes were modified by site-directed mutagenesis, and the mutant promoter regions, as well as the wild-type promoter region, were separately fused to a beta-lactamase reporter gene. Analysis of the expression patterns of these fusions in cultures grown in the presence of glucose, xylan or both carbon sources demonstrated that these motifs were cis -acting negative regulatory elements, each playing a specific role in the regulation of xlnC expression. Box 3 was shown to be critical for the establishment of repression of xlnC expression by glucose, whereas box 2 was shown to play an important role in the induction of xlnC expression by xylan.Peer reviewe

    Burnout syndrome among psychiatric trainees in 22 countries: Risk increased by long working hours, lack of supervision, and psychiatry not being first career choice

    Get PDF
    Background: Postgraduate medical trainees experience high rates of burnout, but evidence regarding psychiatric trainees is missing. We aim to determine burnout rates among psychiatric trainees, and identify individual, educational and work-related factors associated with severe burnout.  Methods: In an online survey psychiatric trainees from 22 countries were asked to complete the Maslach Burnout Inventory (MBI-GS) and provide information on individual, educational and work-related parameters. Linear mixed models were used to predict the MBI-GS scores, and a generalized linear mixed model to predict severe burnout.  Results: This is the largest study on burnout and training conditions among psychiatric trainees to date. Complete data were obtained from 1980 out of 7625 approached trainees (26%; range 17.8-65.6%). Participants were 31.9 (SD 5.3) years old with 2.8 (SD 1.9) years of training. Severe burnout was found in 726 (36.7%) trainees. The risk was higher for trainees who were younger (P < 0.001), without children (P = 0.010), and had not opted for psychiatry as a first career choice (P = 0.043). After adjustment for socio-demographic characteristics, years in training and country differences in burnout, severe burnout remained associated with long working hours (P < 0.001), lack of supervision (P < 0.001), and not having regular time to rest (P = 0.001). Main findings were replicated in a sensitivity analysis with countries with response rate above 50%.  Conclusions: Besides previously described risk factors such as working hours and younger age, this is the first evidence of negative influence of lack of supervision and not opting for psychiatry as a first career choice on trainees' burnout

    High throughput toxicity screening and intracellular detection of nanomaterials

    Get PDF
    EC FP7 NANoREG (Grant Agreement NMP4-LA-2013-310584)Free PMC Article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215403/With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety—preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost.info:eu-repo/semantics/publishedVersio

    Detection and elimination of cellular bottlenecks in protein-producing yeasts

    Get PDF
    Yeasts are efficient cell factories and are commonly used for the production of recombinant proteins for biopharmaceutical and industrial purposes. For such products high levels of correctly folded proteins are needed, which sometimes requires improvement and engineering of the expression system. The article summarizes major breakthroughs that led to the efficient use of yeasts as production platforms and reviews bottlenecks occurring during protein production. Special focus is given to the metabolic impact of protein production. Furthermore, strategies that were shown to enhance secretion of recombinant proteins in different yeast species are presented

    Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level

    Get PDF
    Background: The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. Results: We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. Conclusions: P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength
    corecore