149 research outputs found

    Stellar populations of galaxies in the ALHAMBRA survey up to z1z \sim 1. I. MUFFIT: A Multi-Filter Fitting code for stellar population diagnostics

    Full text link
    We present MUFFIT, a new generic code optimized to retrieve the main stellar population parameters of galaxies in photometric multi-filter surveys, and we check its reliability and feasibility with real galaxy data from the ALHAMBRA survey. Making use of an error-weighted χ2\chi^2-test, we compare the multi-filter fluxes of galaxies with the synthetic photometry of mixtures of two single stellar populations at different redshifts and extinctions, to provide through a Monte Carlo method the most likely range of stellar population parameters (mainly ages and metallicities), extinctions, redshifts, and stellar masses. To improve the diagnostic reliability, MUFFIT identifies and removes from the analysis those bands that are significantly affected by emission lines. We highlight that the retrieved age-metallicity locus for a sample of z0.22z \le 0.22 early-type galaxies in ALHAMBRA at different stellar mass bins are in very good agreement with the ones from SDSS spectroscopic diagnostics. Moreover, a one-to-one comparison between the redshifts, ages, metallicities, and stellar masses derived spectroscopically for SDSS and by MUFFIT for ALHAMBRA reveals good qualitative agreements in all the parameters. In addition, and using as input the results from photometric-redshift codes, MUFFIT improves the photometric-redshift accuracy by 10\sim 10-20%20\%, and it also detects nebular emissions in galaxies, providing physical information about their strengths. Our results show the potential of multi-filter galaxy data to conduct reliable stellar population studies with the appropiate analysis techniques, as MUFFIT.Comment: 31 pages, 18 figures, accepted for publication in A&

    The ALHAMBRA survey: evolution of galaxy spectral segregation

    Get PDF
    We study the clustering of galaxies as a function of spectral type and redshift in the range 0.35<z<1.10.35 < z < 1.1 using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg2^2 in 7 fields, after applying a detailed angular selection mask, with accurate photometric redshifts [σz<0.014(1+z)\sigma_z < 0.014(1+z)] down to IAB<24I_{AB} < 24. From this catalog we draw five fixed number density, redshift-limited bins. We estimate the clustering evolution for two different spectral populations selected using the ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample, we measure the real-space clustering using the projected correlation function. Our calculations are performed over the range [0.03,10.0]h1[0.03,10.0] h^{-1} Mpc, allowing us to find a steeper trend for rp0.2h1r_p \lesssim 0.2 h^{-1} Mpc, which is especially clear for star-forming galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-forming galaxies show weaker clustering with evolution in the correlation length over the analysed redshift range, while quiescent galaxies show stronger clustering already at high redshifts, and no appreciable evolution. We also perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a growing evolution with redshift is clearer. These findings clearly corroborate the well known colour-density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive than those typically populated by star-forming galaxies.Comment: 14 pages, 9 figures, accepted by Ap

    Stellar populations of galaxies in the ALHAMBRA survey up to z1z \sim 1. II. Stellar content of quiescent galaxies within the dust-corrected stellar mass-colour and the UVJUVJ colour-colour diagrams

    Full text link
    Our aim is to determine the distribution of stellar population parameters (extinction, age, metallicity, and star formation rate) of quiescent galaxies within the rest-frame stellar mass-colour and UVJUVJ colour-colour diagrams corrected for extinction up to z1z\sim1. These novel diagrams reduce the contamination in samples of quiescent galaxies owing to dust-reddened galaxies, and they provide useful constraints on stellar population parameters. We set constraints on the stellar population parameters of quiescent galaxies combining the ALHAMBRA multi-filter photo-spectra with our SED-fitting code MUFFIT, making use of composite stellar population models. The extinction obtained by MUFFIT allowed us to remove dusty star-forming (DSF) galaxies from the sample of red UVJUVJ galaxies. The distributions of stellar population parameters across these rest-frame diagrams are revealed after the dust correction and are fitted by the LOESS method to reduce uncertainty effects. Quiescent galaxy samples defined via classical UVJUVJ diagrams are typically contaminated by a 20\sim20% fraction of DSF galaxies. A significant part of the galaxies in the green valley are actually obscured star-forming galaxies (3065\sim30-65%). Consequently, the transition of galaxies from the blue cloud to the red sequence, and hence the related mechanisms for quenching, seems to be much more efficient and faster than previously reported. The rest-frame stellar mass-colour and UVJUVJ colour-colour diagrams are useful for constraining the age, metallicity, extinction, and star formation rate of quiescent galaxies by only their redshift, rest-frame colours, and/or stellar mass. Dust correction plays an important role in understanding how quiescent galaxies are distributed in these diagrams and is key to performing a pure selection of quiescent galaxies via intrinsic colours.Comment: (37 pages, 29 figures, accepted for publication in A&A

    INvolvement of breast CAncer patients during oncological consultations: a multicentre randomised controlled trial--the INCA study protocol.

    Get PDF
    INTRODUCTION: Studies on patient involvement show that physicians make few attempts to involve their patients who ask few questions if not facilitated. On the other hand, the patients who participate in the decision-making process show greater treatment adherence and have better health outcomes. Different methods to encourage the active participation during oncological consultation have been described; however, similar studies in Italy are lacking. The aims of the present study are to (1) assess the effects of a preconsultation intervention to increase the involvement of breast cancer patients during the consultation, and (2) explore the role of the attending companions in the information exchange during consultation. METHODS AND ANALYSIS: All female patients with breast cancer who attend the Oncology Out-patient Services for the first time will provide an informed consent to participate in the study. They are randomly assigned to the intervention or to the control group. The intervention consists of the presentation of a list of relevant illness-related questions, called a question prompt sheet. The primary outcome measure of the efficacy of the intervention is the number of questions asked by patients during the consultation. Secondary outcomes are the involvement of the patient by the oncologist; the patient's perceived achievement of her information needs; the patient's satisfaction and ability to cope; the quality of the doctor-patient relationship in terms of patient-centeredness; and the number of questions asked by the patient's companions and their involvement during the consultation. All outcome measures are supposed to significantly increase in the intervention group. ETHICS AND DISSEMINATION: The study was approved by the local Ethics Committee of the Hospital Trust of Verona. Study findings will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01510964

    The ALHAMBRA survey: Accurate merger fractions by PDF analysis of photometric close pairs

    Full text link
    Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger fractions and rates from the ALHAMBRA survey are in excellent agreement with those from spectroscopic work, both for the general population and for red and blue galaxies. With the merger rate of bright (M_B <= -20 - 1.1z) galaxies evolving as (1+z)^n, the power-law index n is larger for blue galaxies (n = 2.7 +- 0.5) than for red galaxies (n = 1.3 +- 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is N_m = 0.57 +- 0.05 for red galaxies and N_m = 0.26 +- 0.02 for blue galaxies. Our new methodology exploits statistically all the available information provided by photometric redshift codes and provides accurate measurements of the merger fraction by close pairs only using photometric redshifts. Current and future photometric surveys will benefit of this new methodology.Comment: Submitted to A&A, 15 pages, 15 figures, 6 tables. Comments are welcome. Close pair systems available at https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs

    The ALHAMBRA survey : Estimation of the clustering signal encoded in the cosmic variance

    Full text link
    The relative cosmic variance (σv\sigma_v) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv\sigma_v measured in the ALHAMBRA survey. We measure the cosmic variance of several galaxy populations selected with BB-band luminosity at 0.35z<1.050.35 \leq z < 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv\sigma_v with the cosmic variance of the dark matter expected from the theory, σv,dm\sigma_{v,{\rm dm}}. This provides an estimation of the galaxy bias bb. The galaxy bias from the cosmic variance is in excellent agreement with the bias estimated by two-point correlation function analysis in ALHAMBRA. This holds for different redshift bins, for red and blue subsamples, and for several BB-band luminosity selections. We find that bb increases with the BB-band luminosity and the redshift, as expected from previous work. Moreover, red galaxies have a larger bias than blue galaxies, with a relative bias of brel=1.4±0.2b_{\rm rel} = 1.4 \pm 0.2. Our results demonstrate that the cosmic variance measured in ALHAMBRA is due to the clustering of galaxies and can be used to characterise the σv\sigma_v affecting pencil-beam surveys. In addition, it can also be used to estimate the galaxy bias bb from a method independent of correlation functions.Comment: Astronomy and Astrophysics, in press. 9 pages, 4 figures, 3 table

    The ALHAMBRA Survey: Bayesian Photometric Redshifts with 23 bands for 3 squared degrees

    Full text link
    The ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical) survey has observed 8 different regions of the sky, including sections of the COSMOS, DEEP2, ELAIS, GOODS-N, SDSS and Groth fields using a new photometric system with 20 contiguous ~ 300A˚300\AA filters covering the optical range, combining them with deep JHKsJHKs imaging. The observations, carried out with the Calar Alto 3.5m telescope using the wide field (0.25 sq. deg FOV) optical camera LAICA and the NIR instrument Omega-2000, correspond to ~700hrs on-target science images. The photometric system was designed to maximize the effective depth of the survey in terms of accurate spectral-type and photo-zs estimation along with the capability of identification of relatively faint emission lines. Here we present multicolor photometry and photo-zs for ~438k galaxies, detected in synthetic F814W images, complete down to I~24.5 AB, taking into account realistic noise estimates, and correcting by PSF and aperture effects with the ColorPro software. The photometric ZP have been calibrated using stellar transformation equations and refined internally, using a new technique based on the highly robust photometric redshifts measured for emission line galaxies. We calculate photometric redshifts with the BPZ2 code, which includes new empirically calibrated templates and priors. Our photo-zs have a precision of dz/(1+zs)=1dz/(1+z_s)=1% for I<22.5 and 1.4% for 22.5<I<24.5. Precisions of less than 0.5% are reached for the brighter spectroscopic sample, showing the potential of medium-band photometric surveys. The global P(z)P(z) shows a mean redshift =0.56 for I=0.86 for I<24.5 AB. The data presented here covers an effective area of 2.79 sq. deg, split into 14 strips of 58.5'x15.5' and represents ~32 hrs of on-target.Comment: The catalog data and a full resolution version of this paper is available at https://cloud.iaa.csic.es/alhambra

    The ALHAMBRA survey : BB-band luminosity function of quiescent and star-forming galaxies at 0.2z<10.2 \leq z < 1 by PDF analysis

    Get PDF
    Our goal is to study the evolution of the BB-band luminosity function (LF) since z=1z=1 using ALHAMBRA data. We used the photometric redshift and the II-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I24I\leq24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift-magnitude-galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also included in our analysis. We modelled the LF with a redshift-dependent Schechter function affected by the same selection effects than the data. The measured ALHAMBRA LF at 0.2z<10.2\leq z<1 and the evolving Schechter parameters both for quiescent and star-forming galaxies agree with previous results in the literature. The estimated redshift evolution of MBQzM_B^* \propto Qz is QSF=1.03±0.08Q_{\rm SF}=-1.03\pm0.08 and QQ=0.80±0.08Q_{\rm Q}=-0.80\pm0.08, and of logϕPz\log \phi^* \propto Pz is PSF=0.01±0.03P_{\rm SF}=-0.01\pm0.03 and PQ=0.41±0.05P_{\rm Q}=-0.41\pm0.05. The measured faint-end slopes are αSF=1.29±0.02\alpha_{\rm SF}=-1.29\pm0.02 and αQ=0.53±0.04\alpha_{\rm Q}=-0.53\pm0.04. We find a significant population of faint quiescent galaxies, modelled by a second Schechter function with slope β=1.31±0.11\beta=-1.31\pm0.11. We find a factor 2.55±0.142.55\pm0.14 decrease in the luminosity density jBj_B of star-forming galaxies, and a factor 1.25±0.161.25\pm0.16 increase in the jBj_B of quiescent ones since z=1z=1, confirming the continuous build-up of the quiescent population with cosmic time. The contribution of the faint quiescent population to jBj_B increases from 3% at z=1z=1 to 6% at z=0z=0. The developed methodology will be applied to future multi-filter surveys such as J-PAS.Comment: Accepted for publication in Astronomy and Astrophysics. 25 pages, 20 figures, 7 table

    Lyman break and UV-selected galaxies at z ~ 1: II. PACS-100um/160um FIR detections

    Full text link
    We report the PACS-100um/160um detections of a sample of 42 GALEX-selected and FIR-detected Lyman break galaxies (LBGs) at z ~ 1 located in the COSMOS field and analyze their ultra-violet (UV) to far-infrared (FIR) properties. The detection of these LBGs in the FIR indicates that they have a dust content high enough so that its emission can be directly detected. According to a spectral energy distribution (SED) fitting with stellar population templates to their UV-to-near-IR observed photometry, PACS-detected LBGs tend to be bigger, more massive, dustier, redder in the UV continuum, and UV-brighter than PACS-undetected LBGs. PACS-detected LBGs at z ~ 1 are mostly disk-like galaxies and are located over the green-valley and red sequence of the color-magnitude diagram of galaxies at their redshift. By using their UV and IR emission, we find that PACS-detected LBGs tend to be less dusty and have slightly higher total star-formation rates (SFRs) than other PACS-detected UV-selected galaxies within their same redshift range. As a consequence of the selection effect due to the depth of the FIR observations employed, all our PACS-detected LBGs are LIRGs. However, none of them are in the ULIRG regime, where the FIR observations are complete. The finding of ULIRGs-LBGs at higher redshifts suggests an evolution of the FIR emission of LBGs with cosmic time. In an IRX-β\beta diagram, PACS-detected LBGs at z ~ 1 tend to be located around the relation for local starburst similarly to other UV-selected PACS-detected galaxies at their same redshift. Consequently, the dust-correction factors obtained with their UV continuum slope allow to determine their total SFR, unlike at higher redshifts. However, the dust attenuation derived from UV to NIR SED fitting overestimates the total SFR for most of our PACS-detected LBGs in age-dependent way: the overestimation factor is higher in younger galaxies.Comment: Accepted for publication in MNRA
    corecore