56 research outputs found

    Bayesian estimation of genetic parameters for multivariate threshold and continuous phenotypes and molecular genetic data in simulated horse populations using Gibbs sampling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Requirements for successful implementation of multivariate animal threshold models including phenotypic and genotypic information are not known yet. Here simulated horse data were used to investigate the properties of multivariate estimators of genetic parameters for categorical, continuous and molecular genetic data in the context of important radiological health traits using mixed linear-threshold animal models via Gibbs sampling. The simulated pedigree comprised 7 generations and 40000 animals per generation. Additive genetic values, residuals and fixed effects for one continuous trait and liabilities of four binary traits were simulated, resembling situations encountered in the Warmblood horse. Quantitative trait locus (QTL) effects and genetic marker information were simulated for one of the liabilities. Different scenarios with respect to recombination rate between genetic markers and QTL and polymorphism information content of genetic markers were studied. For each scenario ten replicates were sampled from the simulated population, and within each replicate six different datasets differing in number and distribution of animals with trait records and availability of genetic marker information were generated. (Co)Variance components were estimated using a Bayesian mixed linear-threshold animal model via Gibbs sampling. Residual variances were fixed to zero and a proper prior was used for the genetic covariance matrix.</p> <p>Results</p> <p>Effective sample sizes (ESS) and biases of genetic parameters differed significantly between datasets. Bias of heritability estimates was -6% to +6% for the continuous trait, -6% to +10% for the binary traits of moderate heritability, and -21% to +25% for the binary traits of low heritability. Additive genetic correlations were mostly underestimated between the continuous trait and binary traits of low heritability, under- or overestimated between the continuous trait and binary traits of moderate heritability, and overestimated between two binary traits. Use of trait information on two subsequent generations of animals increased ESS and reduced bias of parameter estimates more than mere increase of the number of informative animals from one generation. Consideration of genotype information as a fixed effect in the model resulted in overestimation of polygenic heritability of the QTL trait, but increased accuracy of estimated additive genetic correlations of the QTL trait.</p> <p>Conclusion</p> <p>Combined use of phenotype and genotype information on parents and offspring will help to identify agonistic and antagonistic genetic correlations between traits of interests, facilitating design of effective multiple trait selection schemes.</p

    Results from a blind and a non-blind randomised trial run in parallel: experience from the Estonian Postmenopausal Hormone Therapy (EPHT) Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Estonian Postmenopausal Hormone Therapy (EPHT) Trial assigned 4170 potential participants prior to recruitment to blind or non-blind hormone therapy (HT), with placebo or non-treatment the respective alternatives. Before having to decide on participation, women were told whether they had been randomised to the blind or non-blind trial. Eligible women who were still willing to join the trial were recruited. After recruitment participants in the non-blind trial (N = 1001) received open-label HT or no treatment, participants in the blind trial (N = 777) remained blinded until the end of the trial. The aim of this paper is to analyse the effect of blinding on internal and external validity of trial outcomes.</p> <p>Methods</p> <p>Effect of blinding was calculated as the hazard ratio of selected chronic diseases, total mortality and all outcomes. For analysing the effect of blinding on external validity, the hazard ratios from women recruited to the placebo arm and to the non-treatment arm were compared with those not recruited; for analysing the effect of blinding on internal validity, the hazard ratios from the blind trial were compared with those from the non-blind trial.</p> <p>Results</p> <p>The women recruited to the placebo arm had less cerebrovascular disease events (HR 0.43; 95% CI: 0.26-0.71) and all outcomes combined (HR 0.76; 95% CI: 0.63-0.91) than those who were not recruited. Among women recruited or not recruited to the non-treatment arm, no differences were observed for any of the outcomes studied.</p> <p>Among women recruited to the trial, the risk for coronary heart disease events (HR 0.77; 95% CI: 0.64-0.93), cerebrovascular disease events (HR 0.66; 95%CI: 0.47-0.92), and all outcomes combined (HR 0.82; 95% CI: 0.72-0.94) was smaller among participants in the blind trial than in the non-blind trial. There was no difference between the blind and the non-blind trial for total cancer (HR 0.95; 95% CI: 0.64-1.42), bone fractures (0.93; 95% CI: 0.74-1.16), and total mortality (HR 1.03; 95% CI: 0.53-1.98).</p> <p>Conclusions</p> <p>The results from blind and non-blind trials may differ, even if the target population is the same. Blinding may influence both internal and external validity. The effect of blinding may vary for different outcome events.</p> <p>Trial registration</p> <p>[<a href="http://www.controlled-trials.com/ISRCTN35338757">ISRCTN35338757</a>]</p

    Entering a new era of body indices: the feasibility of a body shape index and body roundness index to identify cardiovascular health status.

    Get PDF
    BACKGROUND: The Body Mass Index (BMI) and Waist Circumference (WC) are well-used anthropometric predictors for cardiovascular diseases (CVD), but their validity is regularly questioned. Recently, A Body Shape Index (ABSI) and Body Roundness Index (BRI) were introduced as alternative anthropometric indices that may better reflect health status. OBJECTIVE: This study assessed the capacity of ABSI and BRI in identifying cardiovascular diseases and cardiovascular disease risk factors and determined whether they are superior to BMI and WC. DESIGN AND METHODS: 4627 Participants (54±12 years) of the Nijmegen Exercise Study completed an online questionnaire concerning CVD health status (defined as history of CVD or CVD risk factors) and anthropometric characteristics. Quintiles of ABSI, BRI, BMI, and WC were used regarding CVD prevalence. Odds ratios (OR), adjusted for age, sex, and smoking, were calculated per anthropometric index. RESULTS: 1332 participants (27.7%) reported presence of CVD or CVD risk factors. The prevalence of CVD increased across quintiles for BMI, ABSI, BRI, and WC. Comparing the lowest with the highest quintile, adjusted OR (95% CI) for CVD were significantly different for BRI 3.2 (1.4-7.2), BMI 2.4 (1.9-3.1), and WC 3.0 (1.6-5.6). The adjusted OR (95% CI) for CVD risk factors was for BRI 2.5 (2.0-3.3), BMI 3.3 (1.6-6.8), and WC 2.0 (1.6-2.5). No association was observed for ABSI in both groups. CONCLUSIONS: BRI, BMI, and WC are able to determine CVD presence, while ABSI is not capable. Nevertheless, the capacity of BRI as a novel body index to identify CVD was not superior compared to established anthropometric indices like BMI and WC

    Impact of adiposity on cardiac structure in adult life: the Childhood Determinants of Adult Health (CDAH) study.

    Get PDF
    BACKGROUND: We have examined the association between adiposity and cardiac structure in adulthood, using a life course approach that takes account of the contribution of adiposity in both childhood and adulthood. METHODS: The Childhood Determinants of Adult Health study (CDAH) is a follow-up study of 8,498 children who participated in the 1985 Australian Schools Health and Fitness Survey (ASHFS). The CDAH follow-up study included 2,410 participants who attended a clinic examination. Of these, 181 underwent cardiac imaging and provided complete data. The measures were taken once when the children were aged 9 to 15 years, and once in adult life, aged 26 to 36 years. RESULTS: There was a positive association between adult left ventricular mass (LVM) and childhood body mass index (BMI) in males (regression coefficient (β) 0.41; 95% confidence interval (CI): 0.14 to 0.67; p = 0.003), and females (β = 0.53; 95% CI: 0.34 to 0.72; p < 0.001), and with change in BMI from childhood to adulthood (males: β = 0.27; 95% CI: 0.04 to 0.51; p < 0.001, females: β = 0.39; 95% CI: 0.20 to 0.58; p < 0.001), after adjustment for confounding factors (age, fitness, triglyceride levels and total cholesterol in adulthood). After further adjustment for known potential mediating factors (systolic BP and fasting plasma glucose in adulthood) the relationship of LVM with childhood BMI (males: β = 0.45; 95% CI: 0.19 to 0.71; p = 0.001, females: β = 0.49; 95% CI: 0.29 to 0.68; p < 0.001) and change in BMI (males: β = 0.26; 95% CI: 0.04 to 0.49; p = 0.02, females: β = 0.40; 95% CI: 0.20 to 0.59; p < 0.001) did not change markedly. CONCLUSIONS: Adiposity and increased adiposity from childhood to adulthood appear to have a detrimental effect on cardiac structure

    Genetically defined elevated homocysteine levels do not result in widespread changes of DNA methylation in leukocytes

    Get PDF
    BACKGROUND:DNA methylation is affected by the activities of the key enzymes and intermediate metabolites of the one-carbon pathway, one of which involves homocysteine. We investigated the effect of the well-known genetic variant associated with mildly elevated homocysteine: MTHFR 677C>T independently and in combination with other homocysteine-associated variants, on genome-wide leukocyte DNA-methylation. METHODS:Methylation levels were assessed using Illumina 450k arrays on 9,894 individuals of European ancestry from 12 cohort studies. Linear-mixed-models were used to study the association of additive MTHFR 677C>T and genetic-risk score (GRS) based on 18 homocysteine-associated SNPs, with genome-wide methylation. RESULTS:Meta-analysis revealed that the MTHFR 677C>T variant was associated with 35 CpG sites in cis, and the GRS showed association with 113 CpG sites near the homocysteine-associated variants. Genome-wide analysis revealed that the MTHFR 677C>T variant was associated with 1 trans-CpG (nearest gene ZNF184), while the GRS model showed association with 5 significant trans-CpGs annotated to nearest genes PTF1A, MRPL55, CTDSP2, CRYM and FKBP5. CONCLUSIONS:Our results do not show widespread changes in DNA-methylation across the genome, and therefore do not support the hypothesis that mildly elevated homocysteine is associated with widespread methylation changes in leukocytes

    Statistical and integrative system-level analysis of DNA methylation data

    Get PDF
    Epigenetics plays a key role in cellular development and function. Alterations to the epigenome are thought to capture and mediate the effects of genetic and environmental risk factors on complex disease. Currently, DNA methylation is the only epigenetic mark that can be measured reliably and genome-wide in large numbers of samples. This Review discusses some of the key statistical challenges and algorithms associated with drawing inferences from DNA methylation data, including cell-type heterogeneity, feature selection, reverse causation and system-level analyses that require integration with other data types such as gene expression, genotype, transcription factor binding and other epigenetic information

    Disentangling associations between DNA methylation and blood lipids: a Mendelian randomization approach

    No full text
    BACKGROUND: DNA methylation is an epigenetic mechanism that has been proposed as a possible link between genetic and environmental determinants of disease. Prior studies reported robust associations between the methylation of specific cytosine-phosphate-guanine (CpG) sites and plasma lipids, namely triglycerides (TGs) and high-density lipoprotein cholesterol (HDL-C). However, the causality of the observed association remains elusive, hampered by weak instrumental variables for methylation status. AIM: We present a novel application of the elastic net approach to implement a bidirectional Mendelian randomization approach to inferring causal relationships between candidate CpGs and plasma lipids in GAW20 data. METHODS: We used DNA methylation, TGs, and HDL-C measured during the visit 2. Based on prior findings, we selected 5 methylation markers (cg00574958, cg07504977, cg06690548, cg19693031, and cg03717755) related to TGs, 2 markers (cg09572125 and cg02650017) related to HDL-C, and 2 markers (cg06500161 and cg11024682) related to both traits. We implemented an elastic net approach to improve the selection of the genetic instrument for the methylation markers, followed by bidirectional Mendelian randomization 2-stage least-squares regression. RESULTS: We observed causal effects of blood fasting TGs on the methylation levels of cg00574958 (CPT1A) and cg06690548 (SLC7A11). For cg00574958, our findings were also consistent with the reverse direction of association, that is, from CPT1A methylation to TGs. CONCLUSIONS: Current evidence does not rule out either direction of association between the methylation of the cg00574958 CPT1A locus and plasma TGs, highlighting the complexity of lipid homeostasis. We also demonstrated a novel approach to improve instrument selection in DNA methylation studies
    corecore