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Abstract 
 
Epigenetics plays a key role in cellular development and function. Alterations to the epigenome are 

thought to capture and mediate the effects of genetic and environmental risk factors on complex 20 

disease. Currently, DNA methylation is the only epigenetic mark that can be measured reliably and 

genome-wide in large numbers of samples. This Review discusses some of the key statistical challenges 

and algorithms associated with drawing inferences from DNA methylation data, including cell-type 

heterogeneity, feature selection, reverse causation and system-level analyses that require integration 

with other data-types such as gene expression, genotype, transcription factor binding and other 25 

epigenetic information. 

 
 
Introduction 
 30 
DNA methylation (DNAm) refers to the covalent attachment of a methyl (CH3) group to DNA bases, which 

for eukaryotes is usually 5-methylcytosine (5mC) in the context of cytosine–guanine dinucleotides (CpGs). 

Like other epigenetic modifications, DNAm is mitotically heritable and plays a key role in embryonic 

development and regulation of gene expression 1. As such, DNAm is highly cell-type specific. DNAm is also 

influenced by genotype and can be altered by exposure to external factors, such as smoking and diet 2-6. Like 35 

somatic mutations, DNAm changes accrue with age 4,7,8 and are thought to mediate the effects of 

environmental risk factors on disease incidence, but also contribute to disease progression and treatment 

resistance 9,10. Irrespective of their potential causal role, DNAm-based biomarkers offer great promise for risk 
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prediction, early detection and prognosis 9. Their discovery is facilitated by technologies that allow genome-

wide measurement of DNAm in a high-throughput manner 11. Importantly, the metastability of DNAm, as 

well as the DNA-based nature of the assays, provide important technical advantages over measuring histone 

modifications or mRNA expression. DNAm assays based on bisulfite conversion [G] in particular, are highly 

quantitative and reproducible, offering high sensitivity to detect small (~1%) changes in DNAm from 5 

samples with limited amounts of available DNA. Among these, the Illumina beadchip microarray technology 

12,13 offers a good compromise between cost and coverage, and is so far still the most popular choice for 

epigenome-wide association studies [G] (EWAS) which require DNAm measurements in hundreds if not 

thousands of samples 13. By contrast, the higher coverage and cost of whole-genome bisulfite sequencing 

(WGBS) and reduced-representation bisulfite sequencing (RRBS) make these the optimal technologies for 10 

mapping reference DNA methylomes, as generated by international consortia such as the US National 

Institutes of Health (NIH) Roadmap Epigenomics Project, the International Human Epigenome Consortium 

(IHEC) and Blueprint 14,15, or for measuring genome-wide DNAm patterns from low-yield DNA samples 

such as cell-free DNA (cfDNA) in plasma 16. 

Rigorous and reliable inference from DNAm data is key to a wide range of downstream tasks in EWAS, 15 

including the identification of disease biomarkers and causal relationships. These tasks require careful 

statistical analyses, starting with quality control steps that assess the reliability of the data, followed by intra-

sample normalization [G] to adjust for sample-specific technical biases (e.g. incomplete bisulfite conversion 

and background correction). Beyond the obvious importance and need for such normalization, downstream 

statistical analyses need to deal with other challenges, including notably batch effects and other confounding 20 

[G] factors, feature selection [G] and integration with other omic data types. Given that DNAm is highly cell-

type specific, cell-type heterogeneity of complex tissues (e.g. blood or breast) constitutes a major confounder, 

requiring the application of cell-type deconvolution algorithms. These algorithms offer a form of in-silico or 

virtual microdissection, allowing inference of DNAm changes that are not driven by alterations in tissue 

composition. Other DNAm alterations have been found to be reproducibly associated with different 25 

environmental factors (e.g. smoking and obesity) 17-19, which can also cause confounding in EWAS. Reverse 

causation also poses challenges, as observed in the case of the relationship between obesity and DNA 

methylation, where the prevailing evidence points to the phenotype of interest altering DNAm rather than 

vice versa 18,20. The interpretability of an EWAS is also limited by DNAm being an imperfect measure of 

gene activity, thus requiring integration with other data types (e.g. mRNA expression or chromatin 30 

immunoprecipitation followed by sequencing (ChIP-seq)), in order to help improve causal inference and 

interpretation. Although statistical methods for such integrative analyses are underdeveloped, the technical 

reliability of DNAm measurements make DNAm the ideal epigenetic focal point for such system-level 

analyses.  
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Here we discuss the aforementioned statistical challenges and review the corresponding computational 

algorithms and software, focusing throughout on downstream analyses, i.e. post intra-sample normalization. 

We first consider confounding factors, due to the need for determining the major sources of inter-sample 

variation, with an emphasis on cellular heterogeneity and cell-type deconvolution algorithms. Next, we turn 

to the main task of an EWAS, which is feature selection. To help the interpretation of EWAS data, we 5 

subsequently describe methods for integrating DNAm with other omic data types, including genotype, 

mRNA expression and transcription factor binding data, including approaches to strengthen causal inference. 

We end with an outlook on outstanding statistical challenges and a vision on how the field will develop. 

Details of technologies for generating DNAm data and associated intra-sample normalization methods are not 

covered here, since they were recently reviewed elsewhere 21-24.  10 

[H1] Cell-type heterogeneity and deconvolution 

EWAS seek to identify differentially methylated cytosines [G] (DMCs) between cases and controls. This task 

is hampered by variations in the proportions of cell types that make up the tissue where DNAm is measured. 

These proportions may vary substantially between cases and controls, and while this variation may be 

biologically and clinically important 25,26, they often reflect changes that are consequential of the disease-15 

state, hampering the identification of alterations that may drive disease risk or progression 27-29. For example, 

rheumatoid arthritis (RA) was shown to be associated with a shift in the granulocyte-to-lymphocyte ratio, 

leading to thousands of DMCs, most of which disappeared upon correction for cell-type composition 30.  

In general, cell-type deconvolution methods are needed to address any one of the following four aims: 

estimation of absolute or relative cell-type fractions within the samples of interest; identification of DMCs 20 

that are not the result of changes in cell-type composition; identification of DNAm profiles representing cell-

types in the tissue of interest; and identification of the cell type (or types) carrying the DMCs. Broadly 

speaking, statistical paradigms for cell-type deconvolution fall into two main categories, called ‘reference-

based’ 31 (if it uses a-priori defined DNAm reference profiles of representative cell types in the tissue of 

interest), and ‘reference-free’ 32 (Box 1). A third paradigm (“semi-reference-free”) has also emerged 33,34, 25 

which circumvents some of the disadvantages of both reference-free and reference-based methods (Box 1).  

 

[H3] Reference-based cell-type deconvolution. The main requirement underlying reference-based inference 

is that the main constitutent cell types of the tissue are known, and that reference molecular profiles are 

available that represent these cell types. Importantly, the reference profiles only need to be defined over 30 

features that are informative of differences between cell types, e.g. in the DNAm context they should ideally 

represent cell-type specific DNAm markers, or be highly discriminative of the different cell subtypes in the 

tissue of interest. The construction of such reference profiles usually needs to be done in advance of the 

study, and typically requires the generation of genome-wide DNAm data of cell populations purified by 
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fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting (MACS), followed by statistical 

analysis to select DMCs between cell subtypes. The importance of constructing a high-quality reference 

profile database has recently been highlighted 35. For instance, similar cell types are likely to have highly co-

linear profiles, which may result in unstable parameter estimation 36. This is of particular concern if quality 

control causes a relatively large number of CpGs present in the reference database to drop out, which may 5 

further aggrevate the co-linearity. Hence, it has been proposed that a reference database should maximize the 

condition number [G] of the matrix it defines 37, which in effect ensures maximal stability of the inference to 

random loss of features in the reference database.  

Assuming a reference database exists, there are then two approaches to infer cell-type fractions within a 

sample of interest. Both methods effectively run a multivariate regression of the sample’s DNAm profile 10 

against the reference DNAm profiles as covariates, with the estimated regression coefficients corresponding 

to cell-type fractions (if appropriately normalized) (Fig.1a). A widely known technique known as constrained 

projection [G] (CP) (also called quadratic programming (QP)) performs the least squares multivariate 

regression whilst imposing normalization constraints on the regression coefficients, which allows the 

estimated coefficients to be directly interpreted as cell-type proportions within the sample 31,38. An alternative 15 

‘non-constrained’ approach is to impose the non-negativity and normalization constraints after estimation of 

the regression coefficients. This is the approach taken by CIBERSORT, which implements a penalized 

multivariate regression, originally presented in the context of gene-expression data 37. A similar non-

constrained approach can be taken with Robust Partial Correlations (RPC) (a robust form of multivariate 

regression) 37,39. A recent comparative DNAm study of CP, CIBERSORT and RPC concluded that for 20 

realistic noise levels, RPC and CIBERSORT might be preferable over CP 39, consistent with findings 

obtained on gene-expression data 37.  

Methods such as CP or CIBERSORT use reference DNAm profiles defined as the average DNAm over 

biological replicates, using DMCs that maximize the differences in mean methylation between cell types. 

Ideally these DMCs would also exhibit very stable (i.e. ultra-low variance) DNAm profiles within cell-types, 25 

displaying as strongly bi-modal profiles. However, depending on the tissue and cell-types, such bi-modal 

DMCs may not be present, so the need may also arise to include the variance in DNAm when performing 

reference-based deconvolution. For instance, an algorithm called CancerLocator models reference DNAm 

profiles using beta distributions [G] , generating beta-distribution references for healthy plasma DNA and 

solid tumours, subsequently using a 2-state beta mixture model to infer tumour burden and tissue of origin of 30 

circulating tumor DNA (ctDNA) in plasma 40 (Fig.1a). Similarly, algorithms for inferring tumour purity of 

primary cancers also use explicit beta distributions and have been shown to provide accurate estimates, in line 

with gold-standard estimates derived from copy-number data 41-43. 
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[H3] Reference-free cell-type deconvolution. To date, there are two main types of reference-free methods 

(Box 1), which differ greatly in terms of their model assumptions. One class is widely known as Surrogate 

Variable Analysis [G] (SVA) 44-46, an approach developed originally for dealing with general unknown 

confounding factors and which has also gained considerable favour for cell-type deconvolution 47-49. SVA 

uses the phenotype of interest [G] (POI) from the outset, and attempts to construct ‘surrogate variables’ that 5 

capture confounding variation of any sort (i.e. not just cell-type compositional changes but e.g. also batch 

effects), in the space of variation that is ‘orthogonal’ to that associated with the POI 44,45,50. A variant of SVA, 

called RefFreeEWAS 32, assumes an explicit mixture modelling structure (as required for modelling cell-type 

composition) and has been demonstrated to work well 32,51. Another variant of SVA, called Independent 

Surrogate Variable Analysis (ISVA) 50, is similar to SVA but uses a blind source separation [G] (BSS) 10 

algorithm (Independent Component Analysis [G] (ICA) 52) instead of principal component analysis [G] 

(PCA) in the residual variation space, which may help to identify a more relevant subspace of confounding 

variation (i.e. a subset of surrogate variables). The need for this subspace selection step may arise if the 

model describing the effect of the POI on the data is a poor one, as this may result in variation associated 

with the POI being found in the surrogate variable subspace 50. Unlike PCA, BSS is designed for 15 

disentangling independent sources of variation 52, and is therefore better suited for deconvolving the residual 

biological variation associated with the POI from potential confounding variation. 

Another set of reference-free approaches, exemplified by methods such as EWASher 53 or ReFACTor 54, do 

not use the phenotype of interest when inferring latent components [G] associated with cell-type composition. 

This is only possible if certain assumptions are made. Specifically, EWASher and ReFACTor assume that the 20 

top principal component of variation in the data is associated with changes in cell-type composition, an 

assumption which will not hold if the phenotype of interest accounts for a larger proportion of data variance. 

Thus, the applicability of these two methods is critically dependent on the phenotype of interest and 

underlying tissue-type (Fig.1b). For instance, the assumption underlying EWASher and ReFACTor may hold 

in whole blood for a wide range of phenotypes, because the granulocyte proportion varies substantially, even 25 

among healthy individuals (see e.g.REF39), yet in a less complex tissue such as peripheral blood, which is 

devoid of granulocytes, cell-type compositional changes could account for a much smaller proportion of total 

data variance. Similarly, in diseases such as cancer, which are characterized by large-scale changes in 

DNAm, involving most of the genome, only a relatively smaller fraction of these changes are due to changes 

in cell-type composition 48,55. Thus, methods such as ReFACTor or EWASher may not offer the level of 30 

sensitivity required for many types of EWAS 48. 

 

[H3] Semi-reference-free cell-type deconvolution. A promising third paradigm, which however remains 

underexplored, can be viewed as semi-reference-free (Box 1). Conceptually, it adapts the Removing 



 

6 
 

Unwanted Variation (RUV) framework 56, in that it attempts to infer ‘empirical control features’, i.e. features 

affected by confounding variation but not associated with the POI, which can subsequently be used to adjust 

the data. In the context of cell-type deconvolution, a pre-specified set of cell-type specific DMCs (e.g. DMCs 

that differ between blood cell subtypes) could serve as empirical control features 34,57. A recent algorithm, 

called RefFreeCellMix, which uses a constrained form of non-negative matrix factorization (NMF), can be 5 

easily adapted in this semi-reference-free manner to infer cell-type proportions 33. By performing NMF on the 

reduced data matrix obtained by selecting cell-type specific DMCs, RefFreeCellMix can obtain estimates of 

cell-type fractions, from which DMCs associated with a POI can subsequently be inferred using supervised 

[G] regression. This approach was recently applied to the deconvolution of breast cancer samples (EDec 

algorithm) 34. More recently, a regularized version of RefFreeCellMix, called MeDeCom 58, which favours 10 

latent factors (representing cell-type specific DNAm profiles) that exhibit bi-modal (i.e. fully unmethylated or 

methylated) methylation states has been shown to lead to improved modeling of cell-type composition. All 

these algorithms also offer a means of identifying the specific cell types carrying the DNAm alterations, 

although this remains largely unexplored. 

 15 

[H3] Comparison of cell-type deconvolution algorithms. For a given EWAS, the choice of cell-type 

deconvolution algorithm depends mainly on the availability of a suitable reference DNAm database. The 

database could be confounded by external factors such as age or genotype, rendering the references less 

useful for application to datasets where these factors might be very different (e.g. using adult blood cell 

subtype reference profiles to estimate cell subtype fractions in umbilical cord blood 59), or, reference profiles 20 

generated on purified cell populations may not capture important in vivo cell–cell interactions which are 

known to alter molecular profiles 60 (Box 1). Beyond these limitations, there are another three factors to 

consider when choosing a cell-type deconvolution method: first, the specific information desired (e.g. DMCs, 

cell-type fractions, or unsupervised discovery of novel cell-types); second, the presence of additional 

confounding factors, and whether these are known or unknown; and third, the POI and tissue type, which 25 

determines the relative data-variance associated with the POI and cell-type composition. Recommendations 

and guidelines for different scenarios are provided (see Fig.1b) and are largely in agreement with those of 

recent comparative studies 47,48,49,61,62. Briefly, for DMC detection in tissues for which the main underlying 

cell-types are known, reference-based methods, which are relatively assumption-free and which can be 

combined with batch-correction methods such as COMBAT 63, are recommended, unless confounders are 30 

unknown, in which case a method like SVA is preferable. Reference-free or semi-reference-free methods are 

necessary for tissues where no reference DNAm profiles are available. Because reference-free methods are 

more dependent on model assumptions, special care must be taken in selecting the most appropriate method, 

which will depend by and large on the relative data variance carried by the POI and cell-type composition, 
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and on the presence of unknown confounders (Fig.1b). For estimating cell-type fractions, a reference-based 

algorithm is most appropriate, although semi-reference-based algorithms such as RefFreeCellMix or 

MeDeCom could also be used if the inferred latent components are uniquely mappable to underlying cell-

types 33. Finally, one may also wish to perform cell-type deconvolution in order to discover novel cell types 

in a tissue of interest. This unsupervised application would require application of methods such as 5 

RefFreeCellMix or MeDeCom on the full set of available CpGs, rather than on an informed subset of cell-

type specific DMCs.  

 

[H3] Epigenetic heterogeneity within cell types. Epigenetic heterogeneity also manifests itself within 

specific cell-types 64, notably pluripotent cells 65 and those of the immune system 66, but also within 10 

hematological cancers 67,68 and the epithelial compartments of solid tumors 55,69. In the context of precursor 

cancer lesions, such epigenetic heterogeneity is believed to be an important driver of cancer risk, whereas in 

cancer, clonal heterogeneity determines disease progression and response to drug treatment 67. Thus, there is 

substantial interest in developing statistical measures that can quantify epigenetic clonal heterogeneity. Such 

quantification is best done using WGBS or RRBS data, because associated reads (representing strings of 15 

binary methylated/unmethylated calls at single-nucleotide resolution), have the required spatial resolution to 

allow epiallelic diversity to be estimated (Fig.1c). Of particular importance is also the detection of shifts in 

the proportions of specific epialleles, for which specific algorithms (e.g. methclone 70) have been developed. 

In the context of Illumina methylation beadarrays, epigenetic loci marking shifts in epigenetic subclones is 

possible using statistical tests for detecting methylation outliers 55. 20 

 

[H1] Feature selection and interpretation 

The most common task in omic-data analysis is feature selection. For any given EWAS, it is useful to think 

of CpG DNAm profiles as belonging to specific ‘families’, each characterized by a particular pattern or 

shape, and each linked to an underlying putative biological (or technical) factor. For instance, DNAm 25 

variation of CpGs marking specific cell types will typically exhibit patterns of DNAm variation that correlate 

linearly with the underlying cell-type fractions, whereas those driven by genetic variants will not. Given that 

current technologies allow measurement of DNAm in effectively a million to several million CpG sites, small 

differences in feature selection methods can have a dramatic impact on the specific ranking and selection of 

CpGs. An appreciation of the intricacies of feature selection is therefore critically important.  30 

[H3] Variably methylated cytosines (VMCs). A popular unsupervised feature selection strategy is to rank and 

filter features by variance, or a robust version such as the median absolute deviation; the aim is to select the 

most variably methylated cytosines [G] (VMCs), whilst also removing those that exhibit little or no variance 

(which are assumed to represent noise) 71. Applying this strategy to DNAm data could however bias the 
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selection of features, because DNAm data is usually quantified in terms of a beta value, which by 

construction is heteroscedastic [G]. In fact, for beta values, variance is maximal at a value of 0.5 72, hence 

filtering by variance would favour genomic regions with intermediate mean levels of DNAm. Filtering tools 

that avoid this bias have been developed 73. Alternatively, DNAm may be quantified in terms of M-values 72, 

which can be obtained directly from the log-ratio of intensities of methylated to unmethylated alleles, or from 5 

beta values by applying the logit transformation [G]. In principle, M-values are more homoscedastic, 

although care must be taken with features that have methylation beta values close to 0 or 1, as the logit 

transformation can turn these into significant outliers 72,74. 

In general, VMCs will exhibit a large range of DNAm values, and will include those driven by single 

nucleotide polymorphisms (SNPs). For a substantial number of these VMCs, the variation will be driven by a 10 

SNP affecting the interrogated cytosine (or another cytosine located within the probe body in the case of 

Illumina beadarrays), and such VMCs are normally removed during quality control 75,76. For other VMCs, the 

SNP driving the variation will not be located at the interrogated cytosine (nor in the underlying probe), thus 

defining methylation quantitative trait loci [G] ( mQTLs) (Fig.2a) 77. Although mQTLs are highly variable, 

they are not always prominent features driving top components in a PCA, unless the study cohort consists of 15 

stratified (by ancestry) populations 18,77,78. This is because principal components represent components of 

maximal co-variation, so that mQTLs (especially those with low minor allele frequencies) only account for 

relatively smaller fractions of data covariance. Other VMCs which will appear more prominently in top 

principal components may be associated with other biological factors such as cell-type composition (Fig.2a), 

or exhibit strongly bi-modal profiles such as those seen in cancer.  20 

 

[H3] Differentially methylated cytosines (DMCs) and regions (DMRs). The most common supervised 

feature selection procedure is to select CpGs for which there is a significant difference in the average between 

phenotypes, defining DMCs (Fig.2b). The simplest method for selecting DMCs is that based on the absolute 

difference in mean beta values, which is analogous to the log-fold-change used in the gene expression 25 

context. However, because of the heteroscedasticity of beta values, such filtering may again bias selection 

against CpGs with very low or very high mean levels of methylation 72. A much safer option is to apply such 

thresholding on differences in mean beta value only after having ranked or selected features based on some 

formal statistic, as the statistic incorporates information about the spread of the data within phenotypes. One 

option is to use non-parametric Wilcoxon rank sum tests, as these only consider the relative ranking of beta 30 

values, although a caveat is that these tests are less powered. Another option is to use t-tests. Although t-tests 

require the data within the phenotypes being compared to be Gaussian distributed (an assumption not 

satisfied with beta-valued data), nevertheless, in practice, this does not impose any more of a limitation than 

the non-Gaussian nature of, for example, gene expression data from microarrays or RNA sequencing (RNA-
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seq), for which empirical Bayes frameworks built on regularized t-statistics have proved extremely popular 79-

81. For feature selection, what matters is the distribution of values across samples, and for both DNAm and 

mRNA expression data, this distribution is approximately Gaussian. Confirming this, t-statistics and 

moderated t-statistics have been successfully applied to beta-valued data and shown to lead to very similar 

rankings compared to the application of the same statistics to M-values 74. An important exception is when 5 

using Bayesian models, which are naturally more sensitive to underlying model assumptions (often Gaussian 

distributions). For instance, in small sample size studies, empirical Bayes models are necessary for obtaining 

improved estimates of variance, thus favouring M-values 72,74. DMCs derived from t-tests or regularized t-

tests may or may not exhibit large differences in average DNAm, since a CpG exhibiting a small (e.g. 5%) 

difference in mean methylation but with low variance within phenotypes may still have a large t-statistic. 10 

Many smoking-associated DMCs identified in whole blood are of this type 17. Cancer DMCs on the other 

hand generally exhibit much larger differences in mean DNAm (>30%, Fig.2b). 

Differential methylation can also be called at the regional level. There are a number of reasons why 

identifying DMRs is desirable. First, due to the processivity of DNA methyltransferases and other enzymes 

modifying the epigenome, DNAm is generally highly correlated on scales up to about 500bp and beyond 15 

16,82,83. DNAm alterations associated with disease phenotypes and age typically also exhibit such spatially 

correlated patterns, albeit much weaker 16. Thus, calling DMRs removes some of the spatial redundancy, 

helping to reduce the dimensionality of the data. Second, calling differential methylation at the regional level 

may offer increased robustness, especially in the context of limited-coverage WGBS data 84,85. Third, 

although still controversial, DNAm alterations that extend to the regional level are thought to be more 20 

functionally important than alterations that only affect isolated sites 86,87. Statistical algorithms for calling 

DMRs include bumphunter 88,89, an algorithm originally designed for high-resolution DNAm data (e.g. 

WGBS/CHARM 90) but which has also been successfully adapted for Illumina Infinium beadchips and which 

can allow detection of small (~1–5kb) DMRs, as well as larger (~100kb–2Mb) DMRs, termed differentially 

methylated blocks (DMBs) 91-96. A more recent algorithm tailored for WGBS data and which exploits the 25 

spatial correlation structure of DNAm, identifies regions of co-variation in methylation (COMETs) 84,85, 

which can then be used as regional features for differential methylation analysis. Using COMETs to call 

differential methylation can result in over 40–50% improvements in sensitivity over DMC-calling, even in 

30× coverage WGBS data 84,85. Spatial correlation of methylation across different tissues and cell types has 

also been recently used to define ‘methylation haplotype blocks’, which facilitates the identification of the 30 

tissue of origin of ctDNA in serum 16. More recently adopted methods for identifying DMRs are DMRcate 97 

and Comb-p 98. It is noteworthy that each DMR method differs in the assumptions made and statistical 

approach taken and therefore different methods very rarely identify precisely the same DMRs. 
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[H3] Differentially variable cytosines (DVCs) and regions (DVRs). An entirely different feature selection 

paradigm is based on features that exhibit differential variance in methylation between two phenotypes, so-

called differentially variable cytosines [G] (DVCs). This approach computes the variance across samples 

belonging to the same phenotype and then compares this variance between two or more phenotypes using a 

statistical test for differential variance (Box 2) 99. It is important to appreciate that DVCs may not be DMCs 5 

(and vice-versa), and that there are also different types of DVCs (Fig.2b).  

The importance of differential variance has been most clearly demonstrated in the context of early 

carcinogenesis 69,100, where differential variance between normal cells from healthy individuals and normal 

cells at risk of neoplastic transformation is critical to the identification of DNAm alterations that define field 

defects [G] in breast55 and cervical cancer69 (Fig.2c). These DNAm alterations are characterized by relatively 10 

large changes in DNAm (typically 20–30% or higher), defining outliers, and which occur predominantly, or 

exclusively, in the samples at risk of neoplastic transformation (Fig.2c). As might be expected from DNAm 

alterations in cells that have not yet undergone neoplastic transformation, these outlier events are relatively 

infrequent and exhibit a stochastic pattern 55. However, in cells that have undergone neoplastic transformation 

or turned invasive, the pattern of DNAm variation becomes more homogeneous and deterministic in the sense 15 

that effectively all (or most) cancer samples exhibit a difference in DNAm (Fig.2c). By combining 

differential-variance-based feature selection with an adaptive index classification algorithm 101 in an approach 

called Epigenetic Variable Outliers for Risk prediction Analysis (EVORA)69, such DVCs have been 

demonstrated to allow prediction of the prospective risk of cervical cancer (Box 2). A modification of 

EVORA, called iEVORA, which offers improved control of the type-1 error rate [G] was recently used to 20 

demonstrate the existence of DNAm field defects in the normal tissue adjacent to breast cancer 55. Given the 

growing importance of differential variance, a number of other algorithms 102-104 have been proposed which 

offer an improved control of the type-1 error rate over the test implemented in EVORA. However, with a 

stricter control of the type-1 error rate, these other differential variance algorithms may also lack the 

sensitivity to detect DNAm alterations in precursor cancer lesions 105. Thus, their application appears limited 25 

to other phenotypes (e.g. neoplasia or invasive cancer).  

An altogether different phenotype for which differential variance has recently been demonstrated to lead to 

novel insight is age 78. Specifically, the Breusch-Pagan test for heteroscedasticity was used to identify CpGs 

whose DNAm variability increases with age, identifying sites that are very different to those making up age-

predictive epigenetic clocks 8,106, and which appear to be more relevant for understanding ageing mechanisms 30 

78.  

As with differential methylation, differential variance may also be defined at the regional level. First, it has 

been possible to demonstrate that there are genomic regions of increased DNAm variability, defining variably 

methylated regions [G] (VMRs) 107, also termed regions of high methylation disorder or entropy 108. Regions 



 

11 
 

that constitute VMRs in one phenotype (e.g. cancer) but not in another (e.g. normal tissue) define 

differentially variable regions [G] (DVRs) 107. DVR detection is possible using dedicated functions in 

software packges such as minfi 89 or DMRcate 97, although the implemented differential variance tests are 

aimed at only controling the type-1 error rate, and may thus be underpowered for detecting epigenetic field 

defects in cancer studies 55. 5 

 

[H3] Interpreting DNA methylation changes. Beyond cell-type composition 109, observed DNAm alterations 

could be associated with deregulation of specific genes or signalling pathways in individual cell types 34,110. 

Thus, there is a strong rationale for testing the enrichment of identified features for specific Gene Ontologies 

(GO) and signalling pathways. As multiple DMCs or DVCs may map to the same gene, it is critical to adjust 10 

for differential representation 111 to avoid spurious over-representation in certain pathways by virtue of a 

higher probe or CpG density in those genes involved. This adjustment can be done with the gometh/gseameth 

algorithm 112. An alternative approach is to assign a DNAm value to a given gene, for instance, by focusing 

on the average DNAm within a certain distance of the transcription start site (TSS)113, and then identifying 

differentially methylated genes, which can be subsequently fed into popular Gene Set Enrichment Analysis 15 

[G] (GSEA) methods 114,115. With a DNAm value assigned to each gene, one may also perform differential 

methylation analysis at the level of signalling pathways, or search for differentially methylated gene modules 

(called ‘EpiMods’) within protein–protein interaction (PPI) networks 113. For instance, such an approach 

demonstrated that the WNT signalling pathway, a key developmental pathway, is a hotspot of age-associated 

DNAm deregulation 113. 20 

 

 

 

[H1] Integration of DNAm with other omic data types 

There are many factors that limit the interpretability of the DNAm data generated in a typical EWAS 116,117. 25 

Besides cell-type heterogeneity, technical batch effects, genetic variation and reverse causation (i.e. 

alterations to measured DNAm levels caused by the phenotype itself) can also cause confounding 18,118. As a 

predictor of gene expression, DNAm is also limited and outperformed by chromatin state information 

encoded by histone modification marks 119,120. Thus, enhancing interpretability requires integration of EWAS 

data with other omic data types, including genotype or gene expression matched to the same samples for 30 

which DNAm is available. 

[H3] Integration of DNAm with genotype. Total heritability of DNAm has been estimated at 20% 77,121, with 

common SNPs accounting for approximately 37% of this heritability 77. In line with this, many studies have 

demonstrated that mQTLs are widespread 77,122,123, accounting for almost 40% of assayed CpG sites and 
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explaining about 20% of the inter-individual variation in DNAm, with environmental effects accounting for 

the remaining 80% 77. Thus, adjusting for DNAm variation induced by genetic variation is a common 

procedure in EWAS, which can be achieved using PCA on the matched genotype data 77,78,124, or directly 

from DNAm data if no matched genotype information is available 125. Beyond being a source of confounding, 

genetically driven DNAm variation provides a useful resource for interrogating the functional role of DNAm 5 

variation in disease-associated loci. For example, functional inferences can be made by ascertaining whether 

disease-associated genetic variants from genome-wide association studies (GWAS) are also mQTLs (and 

may thus in part be influencing disease risk via epigenetic pathways), or by using genotype as a causal anchor 

to strengthen causal inference regarding the role of DNAm in mediating pathways to disease (Box 3, Fig.3a) 

126-128. As a concrete example, genetic variants associated with blood lipid levels were used to demonstrate a 10 

causal effect of lipid levels on DNAm in blood, whereas mQTLs associated with lipid-level DMCs in blood 

excluded an effect in the reverse direction 118. Such inference can thus help to establish causal directionality 

in an EWAS of a disease risk factor, determining whether DNAm may mediate that risk. 

 

[H3] Integration of DNAm with gene expression. The relationship between DNAm and gene expression is 15 

complex. From a modelling perspective, the first challenge is that it is not only the DNAm profile of the gene 

itself, but also the DNAm levels at distal regulatory elements, notably enhancers, that dictate the expression 

level of a gene. In the context of cancer, distal regulation by DNAm patterns at enhancers appears to account 

for more of the intertumor expression variation than corresponding DNAm changes at promoters 129. 

However, expression variation should be assessed primarily against the normal tissue reference (which is 20 

often not done), and adjustment for cell-type heterogeneity is imperative as enhancers are among the most 

cell-type specific regions 110,130. Then, there is the problem that most enhancers loop over their nearest genes 

to target genes much further away, causing uncertainty as to which genes an enhancer may regulate. 

Although improved statistical methods for linking enhancers to their putative gene targets are emerging 131, 

these still need further improvement. Focusing on the gene itself, a third challenge is to ascertain which part 25 

of a gene’s DNAm profile is most predictive of its transcript level, as this may also depend on biological 

context and is still a matter of debate, with some studies suggesting gene body methylation levels as being 

more predictive than the more classical TSS region 132-134. However, a meta-analysis of human genome-wide 

methylation, expression and chromatin data has demonstrated that the relationship between gene-body 

methylation and gene expression is non-monotic, with the lowest and highest expressed genes exhibiting the 30 

highest levels of gene body methylation 135. This meta-analysis is consistent with other studies demonstrating 

that it is the TSS, first exon and 3′ end that exhibit the strongest monotonic associations 87,136,137. At the TSS 

and first exon the correlation is usually negative, characterized by a highly non-linear ‘L’-shape function: i.e. 

methylated promoters are generally associated with gene silencing, whereas unmethylated promoters 
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associate with both transcribed and untranscribed states 138. Focusing on a specific predictive region such as 

the first exon or TSS allows assignment of a DNAm value to each gene, for instance by averaging DNAm 

values for CpGs in this region. The monotonic relation (be it linear or non-linear) between DNAm and 

transcription in these regions further facilitates subsequent integration with gene expression, or with other 

omic gene-level data (e.g. copy-number variants). Importantly, the procedure of assigning a DNAm value to a 5 

gene is a necessary preliminary step for integrative clustering analyses using tools such as iCluster+, which 

perform joint clustering of samples over a common set of features (usually genes) defined for different data 

types 139-141.  

Other attempts at integration of DNAm and gene expression do not assign a unique DNAm value to a gene: 

instead they use information of the spatial shape of the DNAm profile over a gene (and beyond) as a predictor 10 

of gene expression 86,87. Such an approach requires DNAm data at high resolution (e.g. WGBS), to then 

perform unsupervised clustering of gene-based spatial DNAm profiles, typically centred on a 10–30kb 

window around the TSS of genes, and subsequently using special distance metrics to quantify the similarity 

of spatial DNAm profiles 86. This novel approach identified 4–5 spatially distinct DNAm shapes, each 

correlating with under or overexpression in cis 86, further confirming that DNAm patterns that extend well 15 

beyond the 5′ and 3′ ends of a gene are equally informative of gene expression 15,110. More recently, a 

supervised version of this spatial clustering method, which uses a Random Forest classifier, called ME-Class, 

has been shown to improve the prediction of gene expression, highlighting the importance of the TSS and 3′ 

end as the most predictive gene regions 87. 

 20 

[H3] System-level integration of DNAm. A powerful system-level integrative approach is to exploit the well-

known association of DNAm at regulatory elements with transcription factor (TF) binding 142-147 to infer 

patterns of regulatory activity in development and disease. Although DNAm at regulatory sites has 

traditionally been viewed as dictating TF binding affinity, the converse (i.e. DNAm levels at regulatory sites 

being a reflection of binding activity) is also frequently observed 117,144. Furthermore, whereas for most 25 

classes of TFs, DNAm inhibits or is inversely correlated with binding, there are other classes of TFs (e.g. 

those belonging to the homeodomain, POU and NFAT families) that prefer binding to methylated sequences 

145. Thus, although the relationship between DNAm and TF binding is undoubtedly complex, two recent key 

observations have helped to spur a number of novel system-epigenomics [G] methods for inferring TF 

binding activity. One key observation is that tissue-specific TFs can be identified as those with an enrichment 30 

for unmethylated or relatively hypomethylated binding sites 110. Although this was demonstrated by 

integrating WGBS and Encyclopedia of DNA Elements (ENCODE) ChIP-seq data across multiple different 

cell types 110, other studies have shown that similar inferences are possible with lower resolution Infinium 



 

14 
 

methylation beadarrays 93. A second key observation is that integration of trans-mQTLs with cis expression 

quantitative trait loci [G] (cis-eQTLs) can reveal coordinated DNAm alterations at binding sites of a TF 

whose expression is altered by the SNP, thus providing also an important novel paradigm for elucidating the 

downstream effects of non-coding GWAS SNPs (Fig.3b) 124.  

This inverse correlation between DNAm and regulatory element activity can be exploited by computational 5 

tools to infer disrupted regulatory networks associated with disease risk factors 51,93,124,148 and disease itself 

129,149,150. For instance, the Enhancer Linking by Methylation/Expression Relationships (ELMER) algorithm 

(Table 1) 149 begins by identifying enhancers (annotated by ENCODE and the Roadmap Epigenomics 

Mapping Consortium (RMEC) 15,151), whose DNAm levels are altered in cancer. It then uses the matched 

mRNA expression of putative gene targets to construct cancer-specific enhancer–gene networks. ELMER 10 

subsequently uses TF-binding motif enrichment analysis for correlated enhancers and mRNA expression of 

enriched TFs to identify cancer-specific activated TFs. Other similar approaches such as Tracing Enhancer 

Networks using Epigenetic Traits (TENET) 152 and RegNetDriver 153 have recently been proposed (Table 1). 

RegNetDriver constructs tissue-specific regulatory networks by integrating cell-type specific open chromatin 

data with regulatory elements from ENCODE and RMEC, allowing active regulatory elements in a tissue to 15 

be identified. Mapping disease-associated molecular alterations in that tissue onto the corresponding tissue-

specific network can reveal which TFs are deregulated in disease 153. All of these tools can lead to important 

novel hypotheses (e.g. ELMER identified RUNX1 as a key TF determining clinical outcome in kidney 

cancer), as well as novel insights (e.g. RegNetDriver revealed that most of the functional alterations of TFs in 

prostate cancer were associated with DNAm changes but that TF hubs [G] were preferentially altered at the 20 

copy-number level). However, obvious limitations remain: the set of enhancer regions used are usually not 

cell-type specific or were generated in unrepresentative cell-line models, while linking genes to enhancers 

and vice versa is challenging as most enhancers skip their nearest promoter to link to genes that are much 

further away (contact distances can range from 40kb to 3Mb with a median distance of ~180kb 154,155). 

Although tools like ELMER and TENET use correlations between enhancer DNAm and mRNA target 25 

expression to hone in on the more likely targets, these correlations are themselves subject to potential 

confounders such as cell-type heterogeneity.  

Another valuable system-level integrative strategy, exemplified by the Functional Epigenetic Modules (FEM) 

algorithm (Table 1), has been to integrate DNAm and gene expression data in the context of a gene function 

network, for instance a PPI network, to identify hotspots (gene modules) where there is significant epigenetic 30 

deregulation in relation to some phenotype of interest (Fig.3c) 136,156. There are two main reasons why 

integration of DNAm with a PPI network is meaningful. First, PPI networks encode information about which 

proteins interact together and which are therefore more likely to be co-expressed as part of a common 

biological process or signalling pathway. This co-expression is likely to be under epigenetic control, and 
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therefore potentially measurable from DNAm patterns at the corresponding genes 113. Indeed, like gene 

expression, DNAm also exhibits modularity in the context of a PPI network, whereby promoter DNAm levels 

of genes whose proteins interact are on average more highly correlated than those of non-interacting proteins 

(Fig.3c) 113. Second, using a functional network from the outset and searching for subnetworks where there is 

simultaneous differential methylation and differential expression can help to identify biological pathways or 5 

processes that are epigenetically deregulated, which in turn may lead to novel insight. This is not disimilar to 

performing a direct form of GSEA, but using a network instead of an external database of biological terms. 

Similar supervised functional network algorithms have been extensively applied in the gene expression 

context, leading to important novel insights 157-159. As an example of the insights gained using FEM, it 

successfully identified two separate gene modules with the main targets of epigenetic silencing mapping to a 10 

target (HAND2) and co-activator (TGFB1I1) of the progesterone receptor, a key tumour suppressor pathway 

for which inactivation is thought to contribute causally to the development of endometrial cancer 156 136. More 

recently, other algorithms that extend or modify FEM have been proposed (Table 1) 160,161. The algorithm 

Significance-based Modules Integrating the Transcriptome and Epigenome (SMITE) 162 can identify DNAm-

mediated altered cellular states (e.g. gene modules) without the need for direct integration with a PPI 15 

network, thus allowing a larger gene-space to be explored. In summary, although these methods can 

significantly improve the interpretation of DNAm changes in EWAS, they are nevertheless limited by the 

quality of the modelling between methylation and gene expression.  

Another set of integrative algorithms are tailored for integrating DNAm data that is generated in conjunction 

with other data types for the same samples: for instance, this may include mutations, copy-number variants 20 

(CNVs), mRNA, microRNAs (miRNAs) and protein expression 163. Analysing individual data types 

separately and subsequently correlating resulting clusters has been a popular strategy 164, yet performing 

simultaneous inference using all data types together offers, in principle, a much more powerful and unbiased 

framework in which to identify system-level associations and extract novel biological insight. For instance, 

simultaneous inference may help to identify genes that are deregulated epigenetically or through CNVs in a 25 

mutually exclusive fashion 153,165. Although many statistical algorithms for multi-omic integrative analyses 

exist, their application to multi-omic data remains challenging, due to the high-dimensional nature of the 

data, but also because the effect of confounders on the inference is poorly understood. So far, a joint NMF 

algorithm was applied to the matched DNAm, mRNA and miRNA expression data sets for ovarian cancer 

from The Cancer Genome Atlas (TCGA), revealing novel perturbed pathways 166. An integrative DNAm and 30 

mRNA analysis of oestrogen receptor (ER)+ breast cancer used a joint latent variable algorithm, called 

iCluster/iCluster+ 139,141,167, demonstrating that ER+ breast cancer transcriptomic subtypes differ 

epigenetically mainly only in terms of the level of DNAm deregulation 140. Other algorithms and techniques 

for joint multi-omic matrix factorization analyses are available, yet remain largely unexplored in a DNAm 
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context. For instance, Joint and Individual Variation Explained (JIVE) (Table 1) is a powerful multi-

dimensional matrix factorization algorithm, which can identify sources of data variation that are common to 

multiple data types, as well as as those that are unique to each data type 168,169. If multi-omic data is matched 

across all dimensions (e.g. the same genes and samples measured for two different tissue or data types), it can 

be packed into a multi-dimensional array known as a tensor [G] , for which non-Bayesian (Parallel Factor 5 

Analysis (PARAFAC)170) and Bayesian (Sparse Decomposition Analysis (SDA)171) tensorial decomposition 

algorithms are available (Table 1). By approximating the data tensor as a sum of products of simple latent 

component vectors, one for each data type, these models are readily interpretable, with the Bayesian version 

less prone to overfit. A recent study applied SDA to an order-3 tensor of expression values defined over 

20,000 genes, 845 individuals and 3 tissue-types (skin, adipose and lymphoblasts), subsequently correlating 10 

the latent components to SNPs and revealing trans-eQTL gene networks that were either common or unique 

to different tissue types, thus helping delineate tissue-specific functional effects of GWAS SNPs 171. Thus, 

tensorial methods should also be particularly suitable for elucidating tissue-specific and tissue-independent 

mQTLs in EWAS profiling multiple tissue-types. 

 15 

Conclusions and future directions 

Recent studies underline the importance of DNAm as a focal point for elucidating and understanding diverse 

phenomena, including ageing phenotypes 8,78,172-174, functional effects of GWAS variants 30,175, the causal 

pathways between environmental factors and disease risk 18,51,156,176-178, cell-type heterogeneity and 

stochasticity 64,69,178,179, cancer evolution and metastasis 67,68,70,180,181 and 3D chromatin architecture 108,182. 20 

Furthermore, they highlight potential downstream applications, including cancer risk prediction 69,183,184, 

prediction of frailty and all-cause mortality 185-187 and non-invasive detection of cancer and tissue of origin 

from ctDNA in blood plasma 16,40,188. For many of these efforts, cell-type heterogeneity and deconvolution 

will continue to pose an outstanding challenge. Indeed, most of the algorithms for systems-level integration 

that compute correlations between features do not adjust for cell-type heterogeneity, yet this adjustment is 25 

paramount for correct interpretability. Another outstanding challenge is that current algorithms do not allow 

for the identification of the specific cell type (or types) carrying the DMCs, thus requiring laborious follow-

up experimental validation in purified samples. The potential limitation of cell–cell interactions on the 

accuracy of reference profiles used in reference-based inference also needs to be assessed. Hybrid approaches 

that generate reference DNAm (or RNA-seq) profiles for different single cell types in a small number of 30 

individuals could be a fruitful strategy for constructing improved reference profiles that are tailored to the 

tissue of interest 189. Ultimately, the level of resolution required by cell-type deconvolution strategies also 

needs to be determined, as epigenetic and DNAm heterogeneity exists right down to the single-cell level 190. 

Thus, quantification of functional epigenetic heterogeneity will be a key problem for the future. Related to 
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this, it is also unclear whether DNAm or mRNA expression are better suited for cell-type deconvolution 

26,34,37, and whether joint analysis of data types could further improve inference. The generation of gold-

standard datasets, artificial and real, is challenging, yet absolutely necessary to ensure objective comparisons 

of existing and upcoming statistical algorithms 48. In particular, a large comparative and comprehensive 

analysis of cell-type deconvolution algorithms, including novel semi-reference-free methods which are 5 

particularly amenable for Bayesian treatment, is urgently needed.  

Feature selection and inference of causality in EWAS also remains a considerable challenge, even when 

adjustment for cell-type heterogeneity is possible, as features may still be susceptible to reverse causation or 

confounding by other unknown factors. Longitudinal prospective studies can avoid some reverse causation 

effects, and using genotype as a causal anchor via Mendelian randomization [G] , can further help to exclude 10 

the effects of confounders, yet all this does not currently provide a panacea to the problem. Causal inference 

methods often rely on model assumptions (e.g. linearity) that may not hold, and that may lead to residual 

confounding and to wrong or conflicting conclusions. Measurement errors, for instance in epidemiological 

variables, further exacerbate this problem. Thus, as recently proposed 117, causal inference methods may need 

to incorporate prior biological information from the outset in order to strengthen inference: for instance, 15 

guided by recent studies demonstrating that trans-mQTLs at transcription factor binding sites could help to 

delineate the effects of non-coding GWAS SNPs 124, it will be of great interest to extend causal-inference 

methodology to such multi-locus scenarios. Alternatively, breakthrough experimental techniques that allow 

single- and multi-locus epigenome editing 191 will shed new light on epigenetic function and causality, yet 

these will also require the development of novel statistical procedures to fully interpret the effects of 20 

epigenetic perturbations. Another emerging challenge for feature selection is the presence of stochastic 

epigenetic perturbations, exemplified by DNAm outliers in normal tissue that predate disease onset and that 

may be indicators of disease risk (e.g. normal tissue at risk of cancer development) 55. A particular challenge 

is distinguishing DNAm outliers that mark shifts in the epiallele composition of a tissue (contributing to 

epigenetic mosaicism), from DNAm outliers driven by technical or other confounders. 25 

More generally, analysing DNAm in conjunction with other epigenetic and functional data promises to 

improve our understanding of ‘System Epigenomics’. However, this will require sophisticated statistical 

modelling, which could benefit from harnessing innovative approaches used in other fields, such as 

engineering, artificial intelligence and physics. Although the value of advanced machine learning methods 

(e.g. deep neural networks) is undeniable 15,131,192,193, extracting novel biological insight from them is often 30 

limited. Thus, we envisage that phenomenological models inspired or built on physical models 194-197 could 

capture the right level of complexity to extract and harness useful biological insight. Along these lines, 

integrative analysis of multi-omic data, potentially at the single-cell level and within the framework of 

statistical mechanics models 190,195,198-202, may allow construction of epigenetic landscapes as envisaged by 
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Waddington 108,197, which in turn may help to elucidate system-biological principles underlying diverse 

phenomena such as tissue homeostasis and cancer.  

The rapid growth and availability of statistical tools to integrate, analyse and make inferences about DNAm 

data is encouraging. Such developments continue to address the challenges faced by the field and 

fundamental to these developments is an understanding of both the statistical characteristics of the data being 5 

used as well as the biological phenomena they represent. 

 

 
 
[Copy Ed: for boxes 1 & 3, please apply bullet point style for the bulleted parts] 10 
 
Box 1 | Statistical paradigms for cell-type deconvolution 
 
[b1] Reference-based cell-type deconvolution tools 
 These methods are statistical inference paradigms that correct for cell-type heterogeneity by using an 15 
existing reference DNA methylation (DNAm) database of cell types that are thought to be present in the 
tissue of interest. If the main underlying cell types of the tissue are known, then estimates of the absolute cell-
type fractions is possible, otherwise estimated fractions are relative. The estimated absolute or relative cell-
type fractions can then be used as covariates in supervised multivariate regression models to infer DMCs that 
are independent of changes in cell-type composition. 20 

[b2] Advantages 
- Estimation of absolute or relative cell-type fractions in each individual sample. 
- If required, they can be easily combined with batch-correction methods such as COMBAT. 
- The model itself is relatively assumption free. 

 25 
[b2] Disadvantages 
- The tools require knowledge of main cell types that are present in the tissue. 
- ,Reliable reference DNAm profiles must be available for these cell-types. 
- On their own they cannot deal with unknown confounding factors. 
- They assume that cell–cell interactions in the sample do not affect the DNAm profiles of the 30 

individual cell-types. 
- Reference profiles could be confounded by age or genotype. 

 
[b1] Reference-free cell-type deconvolution tools 
These methods  correct for cell-type heterogeneity by inferring from the full data matrix ‘surrogate variables’, 35 
which represent sources of data variation that are driven by cell-type composition. These surrogate variables 
are inferred from the data without the need for a reference DNAm database, and are used as covariates in the 
final supervised multivariate regression model to infer differentially methylated cytosines (DMCs) that are 
independent of changes in cell-type composition.  

[b2] Advantages 40 
- No requirement to know the main cell types in a tissue, or to have reference DNAm profiles, 

hence in principle they are applicable to any tissue-type. 
- De-novo (unsupervised) discovery of novel cell subtypes. 
- They allow for the possibility that cell–cell interactions alter the profiles of individual cell types. 
- They can adjust simultaneously for other confounding factors, known or unknown. 45 

 
[b2] Disadvantages 
- Without further biological input, they cannot provide estimates of cell-type fractions in 

individual samples. 
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- Performance is strongly dependent on model assumptions, which are often not satisfied. 
 

[b1] Semi reference-free cell-type deconvolution tools 
A third paradigm, which corrects for cell-type heterogeneity by inferring surrogate variables representing 
variation due to cell-type composition, but which unlike a purely ‘reference-free’ approach, does so by using 5 
partial prior biological knowledge of which CpGs differ between cell types. Typically, they infer the 
surrogate variables from the reduced data matrix, projected on this set of selected features. 

 
[b2] Advantages 
- They allow for the possibility that cell–cell interactions alter the DNAm profiles of individual 10 

cell types. 
- If required, they can be combined with batch-correction methods such as COMBAT. 
- They are more robust to incomplete knowledge of underlying cell types in tissue of interest. 
- They can provide approximate relative estimates of cell-type fractions in individual samples. 
 15 
[b2] Disadvantages 
- Performance is still strongly dependent on model assumptions, which may not be satisfied. 
- Inference of absolute cell-type fractions in individual samples remains challenging. 
- The ability to resolve highly similar cell types is limited. 

 20 
 

 
Box 2 | Differential variability: a novel feature-selection paradigm 
 
[b1] Differential Variance 25 
Differential Variance (DV) is a novel statistical paradigm for feature selection that has been shown to be 
valuable in studies seeking DNA methylation (DNAm) field defects, i.e. DNAm alterations that appear in the 
normal cell of origin of epithelial cancers and that become enriched in cancer. A test for DV identifies CpGs 
for which the variance in DNAm differs significantly between phenotypes, defining differentially variable 
cytosines (DVCs). Hypervariable DVCs exhibit increased variance (conversely, hypovariable DVCs exhibit 30 
decreased variance) in the disease phenotype compared to normal controls. Depending on the specific test for 
DV, DVCs typically contain varying numbers of outliers, which occur exclusively or predominantly in one 
phenotype. DVCs may also exhibit ultra-stable (i.e. very low variance) DNAm in one phenotype, but not in 
the other. 
 35 
[b1] Statistical tests for DV 

[b2] Bartlett’s test. A test that assumes normality for each of two underlying distributions being 
compared and which is therefore sensitive to outliers. Although it suffers from a high type-1 error 
rate, its sensitivity to outliers (i.e. deviations from normality) makes it an attractive choice because in 
precursor cancer lesions DNAm outliers have been shown to be biologically relevant. This test is 40 
used in Epigenetic Variable Outliers for Risk prediction Analysis (EVORA) and iEVORA and was 
instrumental for identifying DNAm field defects in cervical and breast cancer (Table 1). 
[b2] The Levene and Brown–Forsythe tests. Levene’s test compares the absolute spread of values 
from the mean in each group, using a one-way ANOVA F-test, whereas the Brown–Forsythe test 
uses the median instead of the mean, rendering it more robust. Both tests are less sensitive to 45 
departures from normality than Bartlett’s test. Levene’s test is implemented in the DiffVar package 
(Table 1). 
[b2] Breusch–Pagan test. A test for heteroscedasticity or differential variability in a response 
variable (here DNAm) as a function of a continuously valued independent variable (e.g. age). It 
works by correlating the residuals of a linear regression of the response variable against the 50 
independent variable, to the independent variable. This test has been used to identify CpGs exhibiting 
age-associated increases in DNAm variance (see the main text). 
 

[b1] EVORA 



 

20 
 

EVORA is a statistical framework that uses differential variability in DNAm to identify CpGs that exhibit 
outlier DNAm values in normal cells that are at risk of neoplastic transformation compared to normal cells 
that are not at risk. For a given risk marker CpG it assumes that DNAm outliers may exhibit stochasticity, i.e. 
they define infrequent events across independent samples. Feature selection using DV is combined with an 
adaptive index classification algorithm (effectively, a counting scheme for the number of outliers in a sample) 5 
to construct a risk score. 
 
 
 
Box 3 | Statistical approaches for establishing mediation by DNA methylation 10 
 
DNA methylation (DNAm) is a molecular phenotype that is influenced by endogenous and exogenous factors 
as well as disease processes themselves, and this presents challenges in understanding the correlations 
between measures of interest. A variety of statistical methods have been applied to dissect causal 
relationships and to construct causal pathways involving molecular intermediates including DNAm. These 15 
methods have only been applied to differentially methylated cytosines (DMCs) and have yet to be extended 
to consider the mediating role of differentially methylated regions (DMRs). 
 
[b1] Exposure–outcome mediation 
The most commonly applied approach in epidemiology is a regression-based method originally proposed by 20 
Baron and Kenny 203 that aims to distinguish the degree of mediation of an exposure (E) on an outcome (Y) 
by an intermediate (M). The Sobel test is applied to ascertain whether the effect of E on Y is statistically 
significant once adjusted for M. 

[b2] Advantages 
- It is simple to administer. 25 
- The proportion of mediation can be quantified. 

 
[b2] Disadvantages 
- It requires strong assumptions that are often violated when applying to molecular mediators. 

These assumptions include: (i) Y and M are continuous, and (ii) there is no measurement error in 30 
the mediator. 

- This method should only be applied in the context of complete (not partial) mediation, which is 
usually not the case when considering DNAm. 

Other, more flexible methods have been applied to DNAm data including linear equations, structural equation 
models, marginal structural models and G-computation; however, these approaches all require assumptions of 35 
no measurement error and no unmeasured confounding, which are violated in analyses involving DNAm. 
  
[b1] Causal inference test (CIT) 
This popular approach for exploring causal links in DNAm analyses uses genetic variation as a causal anchor. 
It is analogous to the Baron and Kenny approach in its use of a series of regression analyses to establish 40 
mediated effects but uses genotype (G) in place of the exposure (E). This approach has been used to infer the 
causal effect of methylation quantitative trait loci (mQTLs) on a particular outcome 30. 

[b2] Advantages 
- It avoids confounding and reverse causation in the mediator–outcome relationship by using 

genotype as a causal anchor. 45 
- It is simple to apply. 

 
[b2] Disadvantages 
- It relies on a P-value to determine the causal effect and does not estimate the magnitude of the 

mediated effect. 50 
- It is vulnerable to measurement error in the mediator or outcome. 
- It cannot differentiate between a mediated effect and a situation in which the genetic variant 

directly effects the outcome via an alternative biological pathway (pleiotropy [G] ). 
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[b1] Mendelian randomization (MR) 
This form of instrumental variables (IV) analysis makes use of genetic variants that are robustly associated 
with the exposure (E) or mediator (M) of interest. It can also be applied in the reciprocal direction to evaluate 
the direction of cause from a postulated outcome (Y) on the apparent exposure or mediator. The assumptions 
of MR are detailed at length elsewhere 204. Its application in the context of DNAm is becoming more 5 
widespread 118,205-207 and an automated platform for MR analysis is openly available (http://www.mrbase.org/) 
to facilitate this (see Table 1). 

[b2] Advantages 
- It provides an estimate of the magnitude of the mediated effect. 
- It overcomes the issue of measurement error in the mediator because genotype is usually 10 

measured accurately. 
- It is readily applicable through online tools. 

 
[b2] Disadvantages 
- It is reliant on the identification of cis-mQTLs to tag the differentially methylated site of interest 15 
- It has low power, which necessitates the use of large sample sizes. 
- The potential pleiotropy of genetic variants, although strategies can be adopted to counter this 

limitation 208,209. 
 
 20 
 
Figure legends 
 
Figure 1| DNA methylation analysis of cell-type heterogeneity. a | 1. Estimating cell-type 
fractions in a sample for which a genome-wide DNA methylation (DNAm) profile is available is an 25 
important task as changes in these proportions can have biological and clinical importance, or can 
confound analyses. Constrained projection (CP) infers these proportions by running a constrained 
multivariate regression model of the sample’s DNAm profile against reference DNAm profiles for 
the cell types of interest, with the estimated regression coefficients (w1, w2, w3) representing cell 
proportions. 2. Estimating the relative fractions of healthy cell-free DNA (cfDNA) and circulating 30 
tumour DNA (ctDNA) in plasma presents a novel promising clinical application for non-invasive 
early detection and disease monitoring. The CancerLocator algorithm (Table 1) allows estimation of 
the tumour burden (denoted f ) and the type of tumour. b | Cell-type heterogeneity may cause 
confounding and compromise the identification of differentially methylated cytosines (DMCs) in 
epigenome-wide association studies (EWAS). The diagram presents recommendations as to which 35 
statistical algorithms might be better suited for different EWAS scenarios. This depends on whether 
reference DNAm profiles are available, the presence of unknown confounders and technical batch 
effects. When reference profiles are available, reference-based methods are recommended unless 
there is evidence for other confounding variation in which case Surrogate Variable Analysis (SVA)-
like methods are preferable. If partial prior information is available  e.g. if cell-type specific DMCs 40 
(denoted tDMCs) are known but no reference profiles are available, a semi-reference free approach 
such as RefFreeCellMix is recommended. Relative data variation between phenotype of interest 
(POI) and that due to cell-type heterogeneity is important when deciding between reference-free 
methods. Finally, DMCs are inferred using a multivariate regression of the data against the POI (F 
denotes the link function) and cell-type fractions or surrogate variables as covariates (denoted Q). 45 
Note that regression coefficients have been omitted for sake of clarity. c | A third important task is 
the quantification of epigenetic heterogeneity within a given cell-type, for instance, quantifying 
clonal heterogeneity within tumour cells. Given that DNAm normally exhibits strong spatial 
correlations on scales up to about 500bp, and given that tumours are characterized by widespread 
deviations from the DNAm ground state, one approximate way to estimate clonal epigenetic 50 
heterogeneity is to measure the proportion of discordant reads (PDR). Tumours characterized by 
high epigenetic clonal heterogeneity have been found to exhibit worse clinical outcome (see the 
main text). 
CR, concordant reads;  



 

22 
 

ISVA, Independent Surrogate Variable Analysis;  
PBMC, peripheral blood mononuclear cells;  
RPC, Robust Partial Correlations;  
RUV, Removing Unwanted Variation;  
tDMCs, cell-type-specific DMCs. 5 
 
 
 
Figure 2 | Variability, differential means and differential variability in DNAm data. a | 
Two examples of variably methylated cytosines (VMCs), one driven by single nucleotide 10 
polymorphisms (SNPs) located in cis with the indicated CpG (defining a well-known cis methylation 
quantitative trait locus (cis-mQTL), (left panel), and another driven by variation in immune-cell 
contamination (right panel). Both profiles of CpG DNA methylation (DNAm) derive from an Illumina 
Infinium DNAm dataset encompassing 152 normal cervical smear samples 69. For the mQTL, 
samples are grouped according to the predicted genotype. For the other VMC, blue denotes normal 15 
cervical smears from women who 3 years after sample collection developed a cervical 
intraepithelial neoplasia of grade 2 or higher (CIN2+), whereas green denotes normal cervical 
smears from women who remained healthy. This particular VMC is unmethylated in all white blood 
cells (WBC) but not in cervical epithelial cells and so the variation in the cervical smear is due to 
variation in WBC contamination. Panels illustrate how SNPs and cell-type composition can drive 20 
large variation in DNAm, but variation which may not correlate with case versus control status. b | 
Contrast between differentially methylated cytosines (DMCs) and differentially variable cytosines 
(DVCs). Two examples of each are given, drawn from Illumina Infinium DNAm data of normal 
cervical smears and either cervical intraepithelial neoplasia (CIN2+) or cervical cancer. The average 
levels are shown as horizontal dashed lines. Observe how a DVC is characterized by a very stable 25 
DNAm profile in one phenotype, but with DNAm outliers driving large variation in the other. By 
contrast, a DMC is typically characterized by most samples in one phenotype exhibiting a deviation 
in DNAm value. c | Example of a CpG that exhibits progression in DNAm between successive 
stages in cervical carcinogenesis. When comparing normal cervical smears that progress to CIN2+ 
(Normal→CIN2+) to those which do not (Normal→Normal), this CpG can only be identified (i.e. P-30 
value is highly significant) via a test for differential variance (or for deviation from normality) such 
as Bartlett’s test. When comparing CIN2+ to normal cervical smears, differential variance is still the 
main distinguishing feature. Only when comparing (invasive) cervical cancer to normal cervix does 
this CpG exhibit a stronger difference in average DNAm, and therefore can be identified using e.g. 
t-tests or Wilcoxon tests. Thus, this panel illustrates how the DNAm profile of the same CpG 35 
changes during cervical carcinogenesis and emphasizes the importance of selecting the appropriate 
statistical test, as the choice of test will have a dramatic impact on feature selection. All data 
shown represent real DNAm data derived from REF 69, with the corresponding CpG identifiers given 
above each panel.  
 40 
Figure 3 | Examples of system-level integrative analysis of DNAm data. a | To establish 
causal pathways for observed associations between an exposure, mediator and outcome (Panel-1), 
genotype can be used as a causal anchor. To strengthen causal inference from exposure to 
outcome and from exposure to mediator, a genetic variant, G1 (or combination of multiple 
variants) that robustly correlate with the exposure can be used (Panel-2). Solid lines represent the 45 
established association of the instrumental variable (single nucleotide polymorphism (SNP)) with 
the factor for which it is acting as a proxy and the dashed lines represent the relationships being 
tested in the Mendelian randomization (MR) framework. The association of G1 with the outcome 
(and mediator) provides evidence of a causal impact of the exposure on these factors. When 
considering the causal pathway from the mediator (DNA methylation (DNAm)) to the outcome, a 50 
second genetic variant G2 (or combination of multiple variants) can be used. G2 is a methylation 
quantitative trait locus (mQTL) that robustly correlates with the DNAm site of interest (Panel-3). 
Details of the statistical methods to implement this MR approach are further described in Box 3. G1 
and G2 analyses can, if desired, be conducted in entirely different sample sets and causal inference 
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remains valid. An application of this conceptual framework is shown in Panels 4-6 where the 
exposure–outcome setting is smoking and lung cancer and the proposed mediator is DNAm at the 
AHRR gene locus. SNPs at the CHRNA locus are an established proxy for smoking heaviness and 
have been used in an MR framework. Their application here can corroborate established evidence 
for the causal role of smoking on lung cancer as well as interrogate the causal role for methylation 5 
as a mediating mechanism. b | Integration of DNAm data with matched SNPs and mRNA 
expression can be used to elucidate the role of genome-wide association study (GWAS) SNPs. For 
instance, a genetic variant defining a cis expression QTL (cis-eQTL) for a transcription factor (TF) 
can be found to be associated with a large number of trans-mQTLs. For cis-eQTLs associated with 
increased TF activity, these trans-mQTLs exhibit a skew towards hypomethylation (loss of 10 
methylation is indicated by the transition Cm (methylated cytosine) to C (cytosine)), are enriched 
for binding sites of this TF and for cis expression quantitative trait methylation loci [G] (cis-eQTMs) 
defined by the corresponding TF gene targets. An example of a SNP associated with ulcerative 
colitis illustrates how relevant disrupted pathways can be identified124. c | Like mRNA expression, 
promoter DNAm exhibits modularity, i.e stronger correlations between genes that interact in a 15 
gene-functional network (e.g. a protein–protein interaction (PPI) network). This modularity and the 
association between promoter DNAm and mRNA expression can be exploited to identify gene 
modules that are significantly deregulated at both transcriptomic and epigenetic levels. The 
Functional Epigenetic Modules (FEM) algorithm (Table 1) can be used to identify such hotspots of 
deregulation. A successful application of FEM to endometrial cancer uncovered the HAND2 gene, a 20 
target of the progesterone receptor, which is hypermethylated and silenced in pre-neoplastic 
lesions and in cancer, and which has been shown to drive endometrial carcinogenesis156 136. Another 
gene module centred around TGFB1I1 (also known as HIC5), a known co-activator of the 
progesterone receptor. Part c is adapted from ref 210. 
 25 
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Table 1 | Algorithms and software for downstream statistical analyses of DNA methylation data 
 

Name Description Programming 

language 

Web links Reference 

Cell-type deconvolution algorithms 

CP/QP Reference-based 

method using 

constrained projection 

R github.com/sjczheng/EpiDISH Houseman et al 31 

RPC Reference-based 

Robust Partial 

Correlations 

R github.com/sjczheng/EpiDISH Teschendorff et al 39 

CIBERSORT Reference-based 

Support Vector 

Regressions 

R github.com/sjczheng/EpiDISH Newman et al 37 

SVA Surrogate Variable 

Analysis (reference-

free) 

R www.bioconductor.org 

sva package 

Leek et al 44 

ISVA Independent Surrogate 

Variable Analysis 

(reference-free) 

R https://cran.r-project.org/package=isva Teschendorff et al 50 

RefFreeEWAS Reference-free 

deconvolution 

R https://cran-r-

project.org/package=RefFreeEWAS 

Houseman et al 32 

RefFreeCellMix (Semi)-reference-free 

NMF using recursive 

QP 

R https://cran-r-

project.org/package=RefFreeEWAS 

Houseman et al 33 

MeDeCom (Semi)-reference-free 

constrained and 

regularized NMF 

R http://github.com/lutsik/MeDeCom Lutsik et al 58 

EDec Like RefFreeCellMix 

but applied to breast 

cancer/tissue 

R https://github.com/BRL-BCM/EDec Onuchic et al 34 

RUV/RUVm Removing Unwanted 

Variation 

R http://www.bioconductor.org 

missMethyl package 

Gagnon-Bartsch et al 56 Maksimovic et al 210 

CancerLocator Inference of tumour 

burden and tissue of 

origin from plasma 

cfDNA 

Java https://github.com/jasminezhoulab Kang et al 40 

MethylPurify Tumour purity 

estimation from WGBS 

Python https://pypi.python.org/pypi/MethylPurify 

 

Zheng X et al 41 

http://www.bioconductor.org/
https://github.com/BRL-BCM/EDec
http://www.bioconductor.org/
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or RRBS data 

InfiniumPurify Tumour purity 

estimation from 

Illumina Infinium data 

Python https://bitbucket.org/zhengxiaoqi/ Zhang et al 42 

Algorithms for feature selection 

BSSeq & 

BSmooth 

DMR finder R http://www.bioconductor.org 

bsseq package 

Hansen et al 211 

Bumphunter 

(minfi) 

DMR finder R http://www.bioconductor.org 

minfi package 

Jaffe et al 88 & Aryee et al 89 

DMRcate DMR finder R http://www.bioconductor.org Peters et al 97 

COMETgazer/ 

COMETvintage 

Regions of co-

methylation and 

DMC/DMRs 

C++ & R https://github.com/rifathamoudi/COMETgazer 

https://github.com/rifathamoudi/COMETvintage 

Libertini et al 85 

EVORA/iEVORA Differentially Variable 

CpGs  

R https://cran.r-project.org/package=evora Teschendorff et al 55,69,100,105 

DiffVar Differentially Variable 

CpGs 

R www.bioconductor.org 

missMethyl package 

Phipson et al 102 

GALMSS Generalized Additive 

Linear Model for 

location, scale and 

shape  

R https://cran.r-project.org/package=gamlss Wahl et al 103 

GSEA, pathway, integrative and system-level analysis 

Gometh/gseameth 

(missMethyl) 

Gene Ontology and 

Gene Set Enrichment 

Analysis 

R http://www.bioconductor.org 

missMethyl package 

Phipson et al 112 

extractAB (minfi) Estimation of 

open/closed chromatin 

regions 

R http://www.bioconductor.org 

minfi package 

Fortin et al 182 

FEM/EpiMods Functional Epigenetic 

Modules (DNAm and 

mRNA) 

R http://www.bioconductor.org 

FEM package 

Jiao et al 136 

SMITE Significance-based 

Modules Integrating 

Transcriptome and 

Epigenome 

R http://www.bioconductor.org 

SMITE package 

Wijetunga et al 162 

ME-Class Methylation-based 

Expression 

Classification & 

Prediction 

Python https://github.com/cschlosberg/me-class Schlosberg et al 87 

http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
https://github.com/rifathamoudi/COMETvintage
http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
https://github.com/cschlosberg/me-class
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ELMER Enhancer Linking by 

Methylation/Expression 

Relationships 

R http://www.bioconductor.org 

ELMER package 

Yao et al 149 

TENET Tracing Enhancer 

Networks using 

Epigenetic Traits 

R http://farnhamlab.com/software 

http://www.bioconductor.org  

TENET package 

Rhie et al 152 

TEPIC Integration of open-

chromatin data (e.g. 

NOMe-Seq, DHS) to 

predict gene expression 

Python/C++ https://github.com/schulzlab/TEPIC Schmidt et al 212 

iCluster/iCluster+ Integrative Clustering R http://www.bioconductor.org 

iClusterPlus package 

Shen et al 139 

PARAFAC 

(multiway) 

Parallel Factor Analysis 

/ Non-Bayesian Tensor 

Decomposition 

R https://cran.r-project.org/package=multiway Harshman et al 170 

SDA Sparse Decomposition 

Analysis / Bayesian 

Tensor Decomposition 

Linux 

executable 

https://jmarchini.org/sda Hore et al 171 

JIVE Joint and Individual 

Variation Explained 

R https://cran.r-project.org/package=r.jive O’Connell et al 168 

Methods for causality inference 

MR-Base An analytical platform 

that uses curated 

GWAS data to perform 

Mendelian 

randomization tests and 

sensitivity analyses 

R http://www.mrbase.org Hemani et al 214 

http://biorxiv.org/content/early/2016/12/16/078972  

JLIM Joint Likelihood 

Mapping 

R http://www.github.com/cotsapaslab/jlim/ Chun et al 213 

Bayesian coloc Bayesian test for 

Colocalization 

R https://cran.r-project.org/package=coloc Giambartolomei et al 214 

gwas-pw Joint analysis of 

GWAS signals 

R https://github.com/joepickrell/gwas-pw Pickrell et al 215 

HEIDI Heterogeneity in 

Dependent Instruments 

C++ http://cnsgenomics.com/software/smr/ Zhu et al 216 

 
cfDNA, cell-free DNA;  
CP, constrained projection;  
DHS, DNase-hypersensitive site;  

http://www.bioconductor.org/
http://farnhamlab.com/software
http://www.bioconductor.org/
https://github.com/schulzlab/TEPIC
http://www.bioconductor.org/
https://cran.r-project.org/package=multiway
https://jmarchini.org/sda
https://cran.r-project.org/package=r.jive
http://www.mrbase.org/
http://biorxiv.org/
http://www.github.com/
https://github.com/joepickrell/gwas-pw
http://cnsgenomics.com/
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DMC, differentially methylated CpG;  
DMR, differentially methylated region;  
GSEA, Gene-Set Enrichment Analysis;  
GWAS, genome-wide association study;  
NMF, non-negative matrix factorization;  5 
NOMe-seq, Nucleosome Occupancy and Methylome sequencing;  
QP, quadratic programming;  
RRBS, reduced representation bisulfite sequencing;  
WGBS, whole-genome bisulfite sequencing. 
 10 
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GLOSSARY: 
 

Epigenome-wide-association studies 

(EWAS). Study designs that involve measuring an epigenetic mark (normally DNA methylation) in cases and controls to identify disease-associated differences. 

 5 
Bisulfite conversion 

A technique in which DNA is treated with bisulfite, resulting in modification of unmethylated cytosines into thymines (upon amplification), whereas methylated 

cytosines protected from modification. 

 

Intra-sample normalization 10 
The procedure of adjusting the raw data profile of a biological sample for technical biases and artefacts. This is often follwed by inter-sample normalization, in which 

adjustments are made to the data for technical and biological factors which otherwise cause unwanted (and often confounding) data variation across samples. 

 

Condition number 

In the context of reference-based cell-type deconvolution, the condition number of a reference matrix represents an index of the numerical stability of the inference. 15 
Formally, it measures how sensitive the regression parameters (also known as cell weights) are to small perturbations or errors in the reference matrix. 

 

Constrained projection 

(CP). Also known as quadratic programming (QP). A widely used technique for performing multivariate linear regression with constraints (such as non-negativity 

and normalization) imposed on the regression coefficients. In the context of cell-type deconvolution, the coefficients correspond to cell-type proportions in a sample, 20 
which by definition are non-negative and their sum must add to a number less than or equal to 1. 

 

Supervised 

A general term to describe any statistical inference that uses the phenotype of interest from the outset, for instance, when identifying features correlating with a 

phenotype. 25 
 

Feature selection 

The statistical procedure of identifying features which, in some broad sense, correlate with an exposure or phenotype of interest (POI). 

 

Beta distributions 30 
The distributions of beta values. The beta value is a statistical term used to describe the quantification of DNA methylation at a given cytosine, as the ratio of 

methylated alleles to total number of alleles (methylated + unmethylated). a number which by definition must lie between 0 (fully unmethylated) and 1 (fully 

methylated). 

 

Heteroscedastic 35 
A property of a statistical distribution or of a random sample thereof, whereby the expected variance, or spread, is dependent on the mean. 

 

Logit transformation 
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A mathematical transformation that takes values defined on the unit interval (0,1) (e.g. beta values (β)) into values defined on the open interval (-infinity,+infinity), 

termed M-values. Mathematically, M = log2[β/(1-β)]. 

 

Differentially methylated cytosines 

(DMCs). Cytosines (usually in a CpG context) that exhibit a statistically significant difference in DNA methylation between two groups of samples, according to 5 
some statistical test. 

 

Differentially variable cytosines 

(DVCs). Cytosines (usually in a CpG context) that exhibit a statistically significant difference in the variance of DNA methylation between two groups of samples, 

according to some statistical test. 10 
 

Field defects 

Refers to genetic or epigenetic alterations that are thought to predate the development of cancer and that are usually seen in the normal tissue found adjacent to 

cancer. 

 15 
Type-1 error rate 

The probability of erroneously calling the result of a test significant (positive) when the underlying true hypothesis is the null. It corresponds to the fraction of true 

negatives that are called positive, also known as the false positive rate. 

 

Variably methylated cytosines 20 
(VMCs). Cytosines (usually in a CpG context) that exhibit a significant amount of variance in DNA methylation, as assessed across independent samples and relative 

to other CpG sites. 

 

Variably methylated regions 

(VMRs). Contiguous genomic regions where DNA methylation is highly variable relative to a normal ‘ground state’. A VMR can be defined for one given sample. 25 
 

Differentially variable regions 

(DVRs). Contiguous genomic regions containing a statistically significant number of differentially variable cytosines (DVCs). This is different from a variably 

methylated region (VMR) in that a DVR is derived by comparing a relatively large number of cases and controls. 

 30 
Expression quantitative trait loci 

(eQTLs). A gene whose expression level is correlated with a single nucleotide polymorphism (SNP). If the SNP occurs close (definitions vary, but it could range 

from 10 kb to a 1 Mb window centred on the transcription start site) to the gene, it is called cis-eQTL, otherwise trans-eQTL. 

 

Methylation quantitative trait loci 35 
(mQTLs). CpG sites whose DNA methylation level is correlated with a single nucleotide polymorphism (SNP). If the SNP occurs close to the CpG (within a 10 kb 

window), it is called cis-mQTL, otherwise trans-mQTL. 

 

Expression quantitative trait methylation loci 
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(eQTMs). A gene whose expression level is correlated with the DNA methylation level of a CpG. If the CpG occurs close to the gene (within a 250 kb window), it is 

called a cis-eQTM. 

 

Principal component analysis 

(PCA). An unsupervised dimensionality reduction algorithm, which decomposes the data matrix into a sum of linear principal components (PCs) of variation, ranked 5 
by decreased variance and uncorrelated to each other.  

 

Independent component analysis 

(ICA). An unsupervised dimensionality reduction algorithm, which decomposes the data matrix into a sum of linear components of variation, which are as 

statistically independent from each other as possible. Statistical independence is a stronger condition than the linear uncorrelatedness of principal component analysis 10 
(PCA) components, allowing improved modelling of sources of variation in complex data. 

 

Blind source separation 

(BSS). This refers to the problem of inferring the sources of variation in a data matrix without using any prior information (‘blind’). Algorithms that can achieve this 

are called BSS algorithms, of which independent component analysis (ICA) is one example. 15 
 

Latent components 

A general term for components or sources of data variation, which are ‘hidden’ (or latent), and which are inferred from the data using an unsupervised algorithm.  

 

Surrogate Variable Analysis 20 
(SVA). A widely used technique for selecting features associated with a factor of interest, which are not confounded by other factors. SVA uses a model to identify 

the data variation that is orthogonal to the factor of interest and subsequently uses principal component analysis (PCA) on this data variation matrix to construct 

‘surrogate variables’ (SVs), which in theory should capture confounding sources of variation. 

 

Phenotype of interest 25 
(POI). The factor or variable of interest in an epigenome-wide association study (EWAS). This factor is often binary, representing case–control status, but could also 

represent an ordinal variable (e.g. genotype), or be continuous (e.g. age). 

 

Tensor 

A multi-dimensional array with the number of dimensions often called the ‘order’ or ‘rank’ of the tensor, and for which linear decomposition algorithms are 30 
available, analogous to linear matrix factorization algorithms for data matrices. Scalars, vectors and matrices are tensors of order 0, 1 and 2, respectively. 

 

TF hubs 

In the context of a regulatory network where edges represent regulatory interactions between transcription factors (TFs) and target genes, TF hubs represent those 

TFs with the largest number of interactions. 35 
 

Gene Set Enrichment Analysis 

(GSEA). A widely used statistical procedure to assess whether a derived gene list of interest is enriched for specific biological terms, usually including gene 

ontologies, signalling pathways, specific transcriptomic signatures or targets of gene regulators. 
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Mendelian randomization 

A technique to estimate the effect of an exposure on an outcome using genetric variants and instrumental variables for the exposure. This approach can also be 

applied to assessing mediation. 

 5 
Pleiotropy 

This occurs when a genetic variant is associated with multiple traits. Vertical pleiotropy occurs when the traits are all on the same pathway (and is generally less of a 

problem), whereas horizontal pleiotropy exists where a genetic variant is associated with multiple traits via separate pathways.  

 

Confounding 10 
When the relationship between an exposure and an outcome is not causal but is due to the effects of a third variable (the confounder) on the exposure and the 

outcome. White blood cell heterogeneity can act as a confounder in many epigenetic studies. 

 

System epigenomics 

An emerging field whereby cellular phenotypes in normal development and disease are modelled as complex systems, and using tools from complexity science (e.g. 15 
dynamical system theory or statistical physics) to understand them. 
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Online links 
 
 
FURTHER INFORMATION 
Computational Systems Genomics Lab: http://www.picb.ac.cn/compsysg 35 
European BLUEPRINT Epigenome Mapping Consortium: http://www.blueprint-epigenome.eu 
European Genome–Phenome Archive (EGA): https://www.ebi.ac.uk/ega 
Gene Expression Omnibus (GEO): http://www.ncbi.nlm.nih.gov/geo 
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Human Epigenome Atlas: http://www.epigenomeatlas.org 
ICGC Data Portal: http://dcc.icgc.org/web 
International Human Epigenome Consortium: http://www.ihec-epigenomes.org 
US NIH Roadmap Epigenomics Mapping Consortium: http://www.roadmapepigenomics.org 
Genetics of DNA Methylation Consortium: http://www.godmc.org.uk/  5 
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Key Points 
 
• Cell-type heterogeneity can be a major source of confounding and reverse causation in EWAS. Adjustment for cell-

type composition is therefore critical for an improved interpretation and understanding of EWAS. 
• For a given study, the best choice of cell-type deconvolution algorithm depends not only on the tissue and phenotype 

of interest, but also on the presence of other confounders and the desired output. 
• Most variation in DNAm is driven by genetic factors and cell-type heterogeneity, with corresponding features (mQTLs 

and cell-type specific DMCs) readily identifiable using linear modeling.   
• Identification and interpretation of DNAm changes that accrue with age or exposure to environmental disease risk 

factors, may benefit from differential variance statistics. 
• Analyzing patterns of covariation in DNA methylation at regulatory elements can help identify disrupted regulatory 

networks and gene-modules in disease. 
• The inverse association between DNAm at regulatory elements and transcription factor binding can be exploited to 

elucidate the functional role of non-coding GWAS SNPs, or functional effects caused by exposure to environmental 
disease risk factors. 

• Mendelian Randomization can help to clarify the role of DNAm as a causal mediator between exposure to risk factors 
and disease. 
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