4,035 research outputs found

    Socioeconomic and geographic determinants of survival of patients with digestive cancer in France

    Get PDF
    Using a multilevel Cox model, the association between socioeconomic and geographical aggregate variables and survival was investigated in 81 268 patients with digestive tract cancer diagnosed in the years 1980–1997 and registered in 12 registries in the French Network of Cancer Registries. This association differed according to cancer site: it was clear for colon (relative risk (RR)=1.10 (1.04–1.16), 1.10 (1.04–1.16) and 1.14 (1.05–1.23), respectively, for distances to nearest reference cancer care centre between 10 and 30, 30 and 50 and more than 90 km, in comparison with distance of less than 10 km; P-trend=0.003) and rectal cancer (RR=1.09 (1.03–1.15), RR=1.08 (1.02–1.14) and RR=1.12 (1.05–1.19), respectively, for distances between 10 and 30 km, 30 and 50 km and 50 and 70 km, P-trend=0.024) (n=28 010 and n=18 080, respectively) but was not significant for gall bladder and biliary tract cancer (n=2893) or small intestine cancer (n=1038). Even though the influence of socioeconomic status on prognosis is modest compared to clinical prognostic factors such as histology or stage at diagnosis, socioeconomic deprivation and distance to nearest cancer centre need to be considered as potential survival predictors in digestive tract cancer

    Tests of the Equivalence Principle with Neutral Kaons

    Get PDF
    We test the Principle of Equivalence for particles and antiparticles, using CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time, we search for possible annual, monthly and diurnal modulations of the observables |eta_{+-}| and phi_{+-}, that could be correlated with variations in astrophysical potentials. Within the accuracy of CPLEAR, the measured values of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the gravitational potential. We analyze data assuming effective scalar, vector and tensor interactions, and we conclude that the Principle of Equivalence between particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9}, respectively, for scalar, vector and tensor potentials originating from the Sun with a range much greater than the distance Earth-Sun. We also study energy-dependent effects that might arise from vector or tensor interactions. Finally, we compile upper limits on the gravitational coupling difference between K0 and K0bar as a function of the scalar, vector and tensor interaction range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl) incorporate

    Static magnetization of immobilized, weakly interacting, superparamagnetic nanoparticles

    Get PDF
    The magnetization curve and initial susceptibility of immobilized superparamagnetic nanoparticles are studied using statistical-mechanical theory and Monte Carlo computer simulations. The nanoparticles are considered to be distributed randomly within an implicit solid matrix, but with the easy axes distributed according to particular textures: these are aligned parallel or perpendicular to an external magnetic field, or randomly distributed. The magnetic properties are calculated as functions of the magnetic crystallographic anisotropy barrier (measured with respect to the thermal energy by a parameter σ), and the Langevin susceptibility (related to the dipolar coupling constant and the volume fraction). It is shown that the initial susceptibility χ is independent of σ in the random case, an increasing function of σ in the parallel case, and a decreasing function of σ in the perpendicular case. Including particle-particle interactions enhances χ, and especially so in the parallel case. A first-order modified mean-field (MMF1) theory is accurate as compared to the simulation results, except in the parallel case with a large value of σ. These observations can be explained in terms of the range and strength of the (effective) interactions and correlations between particles, and the effects of the orientational degrees of freedom. The full magnetization curves show that a parallel texture enhances the magnetization, while a perpendicular texture suppresses it, with the effects growing with increasing σ. In the random case, while the initial response is independent of σ, the high-field magnetization decreases with increasing σ. These trends can be explained by the energy required to rotate the magnetic moments with respect to the easy axes. © 2019 The Royal Society of Chemistry.Ministry of Science and Higher Education of the Russian Federation: 02.A. O. I. and E. A. E. gratefully acknowledge research funding from the Ministry of Science and Higher Education of the Russian Federation (Contract No. 02.A03.21.006, Project No. 3.1438.2017/4.6)

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Main outcomes of the Phebus FPT1 uncertainty and sensitivity analysis in the EU-MUSA project

    Get PDF
    The Management and Uncertainties of Severe Accidents (MUSA) project was funded in HORIZON 2020 and is coordinated by CIEMAT (Spain). The project aims at consolidating a harmonized approach for the analysis of uncertainties and sensitivities associated with Severe Accidents (SAs) analysis, focusing on source term figures of merit. The Application of Uncertainty Quantification (UQ) Methods against Integral Experiments (AUQMIE – Work Package 4 (WP4)), led by ENEA (Italy), was devoted to apply and test UQ methodologies adopting the internationally recognized PHEBUS FPT1 test. FPT1 was chosen to test UQ methodologies because, even though it is a simplified SA scenario, it was representative of the in-vessel phase of a severe accident initiated by a break in the cold leg of a PWR primary circuit. WP4 served as a platform to identify and discuss the issues encountered in the application of UQ methodol ogies to SA analyses (e.g. discuss the UQ methodology, perform the coupling between the SA codes and the UQ tools, define the results post-processing methods, etc.). The purpose of this paper is to describe the MUSA PHEBUS FPT1 uncertainty application exercise with the related specifications and the methodologies used by the partners to perform the UQ exercise. The main outcomes and lessons learned of the analysis are: scripting was in general needed for the SA code and uncertainty tool coupling and to have more flexibility; particular attention should be devoted to the proper choice of the input uncertain parameters; outlier values of figures of merit should be carefully analyzed; the computational time is a key element to perform UQ in SA; the large number of uncertain input parameters may complicate the interpretation of correlation or sensitivity analysis; there is the need for a statistically solid handling of failed calculations

    First outcomes from the PHEBUS FPT1 uncertainty application done in the EU MUSA project

    Get PDF
    The Management and Uncertainties of Severe Accidents (MUSA) project, founded in HORIZON 2020 and coordinated by CIEMAT (Spain), aims to consolidate a harmonized approach for the analysis of uncertainties and sensitivities associated with Severe Accidents (SAs) by focusing on Source Term (ST) Figure of Merits (FOM). In this framework, among the 7 MUSA WPs the Application of Uncertainty Quantification (UQ) Methods against Integral Experiments (AUQMIE – Work Package 4 (WP4)), led by ENEA (Italy), looked at applying and testing UQ methodologies, against the internationally recognized PHEBUS FPT1 test. Considering that FPT1 is a simplified but representative SA scenario, the main target of the WP4 is to train project partners to perform UQ for SA analyses. WP4 is also a collaborative platform for highlighting and discussing results and issues arising from the application of UQ methodologies, already used for design basis accidents, and in MUSA for SA analyses. As a consequence, WP4 application creates the technical background useful for the full plant and spent fuel pool applications planned along the MUSA project, and it also gives a first contribution for MUSA best practices and lessons learned. 16 partners from different world regions are involved in the WP4 activities. The purpose of this paper is to describe the MUSA PHEBUS FPT1 uncertainty application exercise, the methodologies used by the partners to perform the UQ exercise, and the first insights coming out from the calculation phase

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered
    corecore