379 research outputs found

    Using Machine Learning techniques for Data Quality Monitoring in CMS and ALICE experiments

    No full text
    Data Quality Assurance plays an important role in all high-energy physics experiments. Currently used methods rely heavily on manual labour and human expert judgements. Hence, multiple attempts are being undertaken to develop automatic solutions especially based on machine learning techniques as the core part of Data Quality Monitoring systems. However, anomalies caused by detector malfunctioning or sub–optimal data processing are difficult to enumerate a priori and occur rarely, making it difficult to use supervised classification. Therefore, researchers from different experiments including ALICE and CMS work extensively on semi–supervised and unsupervised algorithms in order to distinguish potential outliers without manually assigned labels. In this contribution, we will discuss several projects whose that aim at solve this task. Machine learning based solutions bring several advantages and may provide fast and reliable data quality assurance, simultaneously reducing the manpower requirements. A good example of this approach is a model based on deep autoencoder employed in the CMS experiment which has been successfully qualified on CMS data collected during the 2016 LHC run. Tests indicate that this solution is able to detect anomalies with high accuracy and low fake rate when compared against the outcome of the manual labelling by experts. Researchers from the ALICE experiment are currently working on a similar task. They intend to perform a data quality checks in much higher granularity. The current approach is limited to run classification based on manually set cut–offs on descriptive data statistics. More sophisticated machine learning based methods may enable more accurate data selection, on high granularity level of 15-minutes data acquisition periods

    2nd IML Machine Learning Workshop

    No full text
    Simulating detector response for the Monte Carlo-generated collisions is a key component of every high-energy physics experiment. The methods used currently for this purpose provide high-fidelity re- sults, but their precision comes at a price of high computational cost. In this work, we present a proof-of-concept solution for simulating the responses of detector clusters to particle collisions, using the real-life example of the TPC detector in the ALICE experiment at CERN. An essential component of the proposed solution is a generative model that allows to simulate synthetic data points that bear high similarity to the real data. Leveraging recent advancements in machine learning, we propose to use state-of-the-art generative models, namely Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN), that prove their usefulness and efficiency in the context of computer vision and image processing. The main advantage offered by those methods is a significant speed up in the execution time, reaching up to the factor of 103 with respect to the Geant 3. Nevertheless, this computational speedup comes at a price of a lower simulation quality and in this work we show quantitative and qualitative proofs of those limitations of generative models. We also propose further steps that will allow to improve the quality of the models and lead to their deployment in production environment of the TPC detector

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Measurement of inclusive J/ψ\psi pair production cross section in pp collisions at s=13\sqrt{s} = 13 TeV

    No full text
    International audienceThe production cross section of inclusive J/ψ\psi pairs in pp collisions at a centre-of-mass energy s=13\sqrt{s} = 13 TeV is measured with ALICE. The measurement is performed for J/ψ\psi in the rapidity interval 2.502.5 0. The production cross section of inclusive J/ψ\psi pairs is reported to be 10.3±2.3(stat.)±1.3(syst.)10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)} nb in this kinematic interval. The contribution from non-prompt J/ψ\psi (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p−-Pb collisions

    No full text
    International audienceMeasurements of the production of electrons from heavy-flavour hadron decays in pp collisions at s=13\sqrt{s} = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (pTp_{\rm T}) of 0.2 GeV/c/c and up to pT=35p_{\rm T} = 35 GeV/c/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p−-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the pTp_{\rm T} range 0.5<pT<260.5 < p_{\rm T} < 26 GeV/c/c at sNN=8.16\sqrt{s_{\rm NN}} = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p−-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong pTp_{\rm T} dependence is observed in pp collisions, where the yield of high-pTp_{\rm T} electrons increases faster as a function of multiplicity than the one of low-pTp_{\rm T} electrons. The measurement in p−-Pb collisions shows no pTp_{\rm T} dependence within uncertainties. The self-normalised yields in pp and p−-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations

    Jet fragmentation transverse momentum distributions in pp and p-Pb collisions at s \sqrt{s} , sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    Jet fragmentation transverse momentum (jT_{T}) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT_{T} algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT_{T} values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT_{T} distributions are compared with a variety of parton-shower models. Herwig and Pythia 8 based models describe the data well for the higher jT_{T} region, while they underestimate the lower jT_{T} region. The jT_{T} distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT_{T} values (called the “wide component”), related to the perturbative component of the fragmentation process, and with a Gaussian for lower jT_{T} values (called the “narrow component”), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation

    Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pppp collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    International audienceMid-rapidity production of π±\pi^{\pm}, K±\rm{K}^{\pm} and (pˉ\bar{\rm{p}})p measured by the ALICE experiment at the LHC, in Pb-Pb and inelastic pp collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum (pTp_{\rm{T}}) range from hundreds of MeV/cc up to 20 GeV/cc. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0−-90%. The comparison of the pTp_{\rm{T}}-integrated particle ratios, i.e. proton-to-pion (p/π\pi) and kaon-to-pion (K/π\pi) ratios, with similar measurements in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV show no significant energy dependence. Blast-wave fits of the pTp_{\rm{T}} spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/π\pi, K/π\pi) as a function of pTp_{\rm{T}} show pronounced maxima at pTp_{\rm{T}} ≈\approx 3 GeV/cc in central Pb-Pb collisions. At high pTp_{\rm{T}}, particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high pTp_{\rm{T}} and compatible with measurements at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily

    Measurements of the groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV

    No full text
    International audienceThe jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity (|η| < 0.9). The anti-kT_{T} algorithm is used with jet resolution parameters R = 0.2 and R = 0.4 for several transverse momentum {p}_{\mathrm{T}}^{\mathrm{ch}} ^{jet} intervals in the 20–100 GeV/c range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, λα_{α}, and groomed jet angularities, λα,g_{α,g}, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters α = 1, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies.[graphic not available: see fulltext

    Neutron emission in ultraperipheral Pb-Pb collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208^{208}Pb nuclei at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02~TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76~TeV. In addition, the cross sections for the exclusive emission of 1, 2, 3, 4 and 5 forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203^{207,206,205,204,203}Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of Pb208 nuclei at sNN=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of Pb207,206,205,204,203, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208^{208}Pb nuclei at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203^{207,206,205,204,203}Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh)

    Enhanced deuteron coalescence probability in jets

    No full text
    The transverse-momentum (pT) spectra and coalescence parameters B2 of (anti)deuterons are measured in pp collisions at s√=13 TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest pT in the event (pleadT>5 GeV/c) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions and the jet signal is obtained as the difference between the Toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the Transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons inside the jet cone as compared to the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase space distributions of nucleons are generated using PYTHIA 8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in PYTHIA 8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the BJet2 is not reproduced by the models, which instead give a decreasing trend
    • 

    corecore