89 research outputs found

    HIC1 (hypermethylated in cancer 1) SUMOylation is dispensable for DNA repair but is essential for the apoptotic DNA damage response (DDR) to irreparable DNA double-strand breaks (DSBs).

    Get PDF
    The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFβR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair

    Cyclin D1 Stability Is Partly Controlled by O-GlcNAcylation

    Get PDF
    Cyclin D1 is the regulatory partner of the cyclin-dependent kinases (CDKs) CDK4 or CDK6. Once associated and activated, the cyclin D1/CDK complexes drive the cell cycle entry and G1 phase progression in response to extracellular signals. To ensure their timely and accurate activation during cell cycle progression, cyclin D1 turnover is finely controlled by phosphorylation and ubiquitination. Here we show that the dynamic and reversible O-linked β-N-Acetyl-glucosaminylation (O-GlcNAcylation) regulates also cyclin D1 half-life. High O-GlcNAc levels increase the stability of cyclin D1, while reduction of O-GlcNAcylation strongly decreases it. Moreover, elevation of O-GlcNAc levels through O-GlcNAcase (OGA) inhibition significantly slows down the ubiquitination of cyclin D1. Finally, biochemical and cell imaging experiments in human cancer cells reveal that the O-GlcNAc transferase (OGT) binds to and glycosylates cyclin D1. We conclude that O-GlcNAcylation promotes the stability of cyclin D1 through modulating its ubiquitination

    O-GlcNAcase is essential for embryonic development and maintenance of genomic stability

    Get PDF
    Dysregulation of O-GlcNAc modification catalyzed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) contributes to the etiology of chronic diseases of aging, including cancer, cardiovascular disease, type 2 diabetes, and Alzheimers disease. Here we found that natural aging in wild-type mice was marked by a decrease in OGA and OGT protein levels and an increase in O-GlcNAcylation in various tissues. Genetic disruption of OGA resulted in constitutively elevated O-GlcNAcylation in embryos and led to neonatal lethality with developmental delay. Importantly, we observed that serum-stimulated cell cycle entry induced increased O-GlcNAcylation and decreased its level after release from G2/M arrest, indicating that O-GlcNAc cycling by OGT and OGA is required for precise cell cycle control. Constitutively, elevated O-GlcNAcylation by OGA disruption impaired cell proliferation and resulted in mitotic defects with downregulation of mitotic regulators. OGA loss led to mitotic defects including cytokinesis failure and binucleation, increased lagging chromosomes, and micronuclei formation. These findings suggest an important role for O-GlcNAc cycling by OGA in embryonic development and the regulation of the maintenance of genomic stability linked to the aging process.close374

    OGA heterozygosity suppresses intestinal tumorigenesis in Apc min/+ mice

    Get PDF
    Emerging evidence suggests that aberrant O-GlcNAcylation is associated with tumorigenesis. Many oncogenic factors are O-GlcNAcylated, which modulates their functions. However, it remains unclear how O-GlcNAcylation and O-GlcNAc cycling enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), affect the development of cancer in animal models. In this study, we show that reduced level of OGA attenuates colorectal tumorigenesis induced by Adenomatous polyposis coli (Apc) mutation. The levels of O-GlcNAcylation and O-GlcNAc cycling enzymes were simultaneously upregulated in intestinal adenomas from mice, and in human patients. In two independent microarray data sets, the expression of OGA and OGT was significantly associated with poor cancer-specific survival of colorectal cancer (CRC) patients. In addition, OGA heterozygosity, which results in increased levels of O-GlcNAcylation, attenuated intestinal tumor formation in the Apc min/+ background. Apc min/+ OGA +/-mice exhibited a significantly increased survival rate compared with Apc min/+ mice. Consistent with this, Apc min/+ OGA +/-mice expressed lower levels of Wnt target genes than Apc min/+. However, the knockout of OGA did not affect Wnt/??-catenin signaling. Overall, these findings suggest that OGA is crucial for tumor growth in CRC independently of Wnt/??-catenin signaling.open2

    O-GlcNAcylation and metabolic reprograming in cancer

    Get PDF
    Although cancer metabolism has received considerable attention over the past decade, our knowledge on its specifics is still fragmentary. Altered cellular metabolism is one of the most important hallmarks of cancer. Cancer cells exhibit aberrant glucose metabolism characterized by aerobic glycolysis, a phenomenon known as Warburg effect. Accelerated glucose uptake and glycolysis are main characteristics of cancer cells that allow them for intensive growth and proliferation. Accumulating evidence suggests that O-GlcNAc transferase (OGT), an enzyme responsible for modification of proteins with N-acetylglucosamine, may act as a nutrient sensor that links hexosamine biosynthesis pathway to oncogenic signaling and regulation of factors involved in glucose and lipid metabolism. Recent studies suggest that metabolic reprograming in cancer is connected to changes at the epigenetic level. O-GlcNAcylation seems to play an important role in the regulation of the epigenome in response to cellular metabolic status. Through histone modifications and assembly of gene transcription complexes, OGT can impact on expression of genes important for cellular metabolism. This paper reviews recent findings related to O-GlcNAc-dependent regulation of signaling pathways, transcription factors, enzymes, and epigenetic changes involved in metabolic reprograming of cancer

    Proteomics and PUGNAcity will overcome questioning of insulin resistance induction by nonselective inhibition of O-GlcNAcase

    No full text
    PTMs are the ultimate elements that perfect the existence and the activity of proteins. Owing to PTM, not less than 500 millions biological activities arise from approximately 20 000 protein-coding genes in human. Hundreds of PTM were characterized in living beings among which is a large variety of glycosylations. Many compounds have been developed to tentatively block each kind of glycosylation so as to study their biological functions but due to their complexity, many off-target effects were reported. Insulin resistance exemplifies this problem. Several independent groups described that inhibiting the removal of O-GlcNAc moieties using O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), a nonselective inhibitor of the nuclear and cytoplasmic O-GlcNAcase, induced insulin resistance both in vivo and ex vivo. The development of potent and highly selective O-GlcNAcase inhibitors called into question that elevated O-GlcNAcylation levels are responsible for insulin resistance; these compounds not recapitulating the insulin-desensitizing effect of PUGNAc. To tackle this intriguing problem, a South Korean group recently combined ATP-affinity chromatography and gel-assisted digestion to identify proteins, differentially expressed upon treatment of 3T3-L1 adipocytes with PUGNAc, involved in protein turnover and insulin signaling

    Implication of O-GlcNAc in the regulation of the oocyte G2/M transition and the early embryogenesis in Xenopus laevis

    No full text
    La O-GlcNAc est une glycosylation dynamique, résidente du cytosol et du noyau, participant à la régulation de processus biologiques tels que le cycle cellulaire et l'embryogenèse. Nos travaux ont porté dans un premier temps sur le contrôle par la O-GlcNAc de la reprise méiotique de l'ovocyte deXenopus laevis, processus analogue à la transition G2/M du cycle cellulaire. Cette transition G2/M est caractérisée par l'activation simultanée du M-phase Promoting Factor, facteur universel d'entrée en phase M et de la voie MAPK-Erk2, et par une augmentation du niveau de O-GlcNAc. Nous avons démontré que cette augmentation de O-GlcNAc était primordiale pour la reprise méiotique ovocytaire puisque l'inhibition de l'OGT, l'enzyme transférant le résidu de GlcNAc, empêche la transition G2/M de l'ovocyte alors que sa surexpression accélère ce phénomène. Nous avons identifié 24 protéines dont le niveau de O-GlcNAc augmente au cours de la reprise méiotique dont des protéines du cytosquelette, la kinase erk2, la phosphatase PP2A, des enzymes de la glycolyse et des protéines ribosomales. Nous avons également entrepris l'étude des variations de O-GlcNAc, d'OGT et d'UDP-GlcNAc au cours de l'ovogenèse et de l'embryogenèse précoce chez Xenopus laevis et avons montré que la dynamique de la O-GlcNAc était complexe tout au long de ces deux processus. Notamment, nous avons observé une diminution drastique et transitoire de la O-GlcNAc au début de la gastrulation suggérant une implication de la glycosylation dans les phénomènes de migration cellulaire caractéristiques de cette étape du développement mettant en place les trois feuillets embryonnaires à l'origine de tous les tissus de l'adulte.O-GlcNAc is a dynamic and reversible post-translational modification found within the cytosol and the nucleus that take part in the regulation of many cellular processes among which cell cycle and embryogenesis. First, our works have focused on the study of O-GlcNAc implication in the control of Xenopus laevis oocyte meiotic resumption, a process analogous to the G2/M transition of the cell cycle. This G2/M transition is characterized by the simultaneous activation of the M-phase Promoting Factor, the universal regulator of the M-Phase entry and of the MAPK-Erk2 pathway but also by a sudden increase in the oocyte O-GlcNAc content. We have demonstrated that this O-GlcNAc increase was essential for meiotic resumption since the inhibition of OGT, the enzyme transferring the O-GlcNAc, prevents the oocyte G2/M transition whereas OGT overexpression accelerates this process. We identified 24 proteins that O-GlcNAc modification increases during meiotic resumption among which cytoskeletal proteins, the kinase erk2, the phosphatase PP2A, several glycolysis enzymes and sorne ribosomal proteins. Second, we have undertaken the study of O-GlcNAc, OGT and UDP-GlcNAc variations during the oogenesis and the early development of Xenopus laevis and we showed that the O-GlcNAc dynamism is intricate from the Xenopus oogenesis to embryogenesis. ln particular, we observed a drastic and transitory O-GlcNAc decrease at the onset of gastrulation, suggesting a role for O-GlcNAc in the regulation of cell migration characteristic of this stage of development since it permits the generation of the three germ layers, precursors ofthe whole adult tissues
    corecore