122 research outputs found
Influence of climatic variables on crown condition in pine forests of Northern Spain
Producción CientíficaThe aim of this study was to find relationships between crown condition and
some climatic parameters to identify which are those having a main influence on
crown condition, and how this influence is shown in the tree (crown transparency),
and to contribute to the understanding of how these parameters will affect under
future climate change scenarios
Multi-Scale Simulation Modeling for Prevention and Public Health Management of Diabetes in Pregnancy and Sequelae
Diabetes in pregnancy (DIP) is an increasing public health priority in the
Australian Capital Territory, particularly due to its impact on risk for
developing Type 2 diabetes. While earlier diagnostic screening results in
greater capacity for early detection and treatment, such benefits must be
balanced with the greater demands this imposes on public health services. To
address such planning challenges, a multi-scale hybrid simulation model of DIP
was built to explore the interaction of risk factors and capture the dynamics
underlying the development of DIP. The impact of interventions on health
outcomes at the physiological, health service and population level is measured.
Of particular central significance in the model is a compartmental model
representing the underlying physiological regulation of glycemic status based
on beta-cell dynamics and insulin resistance. The model also simulated the
dynamics of continuous BMI evolution, glycemic status change during pregnancy
and diabetes classification driven by the individual-level physiological model.
We further modeled public health service pathways providing diagnosis and care
for DIP to explore the optimization of resource use during service delivery.
The model was extensively calibrated against empirical data.Comment: 10 pages, SBP-BRiMS 201
Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model
Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions
Diachronic Variation of Temporal Expressions in Scientific Writing Through the Lens of Relative Entropy
The abundance of temporal information in documents has lead to an increased interest in processing such information in the NLP community by considering temporal expressions. Besides domain-adaptation, acquiring knowledge on variation of temporal expressions according to time is relevant for improvement in automatic processing. So far, frequency-based accounts dominate in the investigation of specific temporal expressions. We present an approach to investigate diachronic changes of temporal expressions based on relative entropy – with the advantage of using conditioned probabilities rather than mere frequency. While we focus on scientific writing, our approach is generalizable to other domains and interesting not only in the field of NLP, but also in humanities.This work is partially funded by Deutsche Forschungsgemeinschaft (DFG) under grant SFB 1102: Information Density and Linguistic Encoding (www.sfb1102.uni-saarland.de)
Enucleated L929 mouse fibroblasts support invasion and multiplication of Shigella flexneri 5a
Detection and Attribution of Temperature Changes in the Mountainous Western United States
Large changes in the hydrology of the western United States have been observed since the mid-twentieth century. These include a reduction in the amount of precipitation arriving as snow, a decline in snowpack at low and midelevations, and a shift toward earlier arrival of both snowmelt and the centroid (center of mass) of streamflows. To project future water supply reliability, it is crucial to obtain a better understanding of the underlying cause or causes for these changes. A regional warming is often posited as the cause of these changes without formal testing of different competitive explanations for the warming. In this study, a rigorous detection and attribution analysis is performed to determine the causes of the late winter/early spring changes in hydrologically relevant temperature variables over mountain ranges of the western United States. Natural internal climate variability, as estimated from two long control climate model simulations, is insufficient to explain the rapid increase in daily minimum and maximum temperatures, the sharp decline in frost days, and the rise in degree-days above 0°C (a simple proxy for temperature-driven snowmelt). These observed changes are also inconsistent with the model-predicted responses to variability in solar irradiance and volcanic activity. The observations are consistent with climate simulations that include the combined effects of anthropogenic greenhouse gases and aerosols. It is found that, for each temperature variable considered, an anthropogenic signal is identifiable in observational fields. The results are robust to uncertainties in model-estimated fingerprints and natural variability noise, to the choice of statistical downscaling method, and to various processing options in the detection and attribution method.California Energy Commission///Estados UnidosU.S. Department of Energy/[DE-AC52-07NA27344]//Estados UnidosUniversidad de Costa Rica//UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI
- …
