9 research outputs found
Energy Scenarios for South Eastern Europe: A close look into the Western Balkans
"The Energy Scenarios for South East Europe" thematic seminar took place on the 15th of December 2015 in Vienna, Austria. The workshop was organized by Institute of Energy and Transport of the European Commission's Joint Research Centre (JRC-IET), hosted by the Energy Community Secretariat (ECS) and sponsored by the Directorate-General for Neighbourhood and Enlargement Negotiations (DG-NEAR) in the framework of the Travel Accommodation and Conference facility for Western Balkans and Turkey, a programme of dissemination activities organised by the Commission in the EU or the beneficiary country in connection with the enlargement process and the pre-accession strategy. The aim of the workshop was to bring together representatives from think tanks, scientific institutes, the academia and the private sector with government officials, the national statistical agencies and the local TSO representatives from the Western Balkan region to exchange views on potential energy technology deployment scenarios that could facilitate a low carbon development pathway for the enlargement countries, but also exchange on the methodologies utilized and identify challenges as well as potential pitfalls in this process. The workshop included three sessions of specific thematic focus. The first session provided the "regional picture" with forecasts on the development of the energy and power systems in the western Balkans. The second session discussed case studies on low carbon development trajectories for specific countries in the region; and the third session explored the role of particular technologies in this context. This report comprises of long abstracts from the workshop presentations and closes with a chapter on conclusions and recommendations that resulted from the discussion sessions
Analysis of renewable energy sources and electric vehicle penetration into energy systems predominantly based on lignite
We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050
Analysis of renewable energy sources and electric vehicle penetration into energy systems predominantly based on lignite
We consider an integration of renewable energy into transport and electricity
sectors through vehicle to grid (V2G) technologies for an energy system that is
predominantly based on lignite. The national energy system of Macedonia is
modeled using EnergyPLAN which integrates energy for electricity, transport and
heat, and includes hourly fluctuations in human needs and the environment. We
show that electric-vehicles can provide the necessary storage enabling a fully
renewable energy profile for Macedonia that can match the country's growing
demand for energy. Furthermore, a large penetration of electric vehicles leads
to a dramatic reduction of 47% of small particles and other air pollutants
generated by car traffic in 2050.Comment: 15 pages, 9 figures. The paper is accepted for publication in the
European Physics Journal - Special Topic
History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining
Text mining is an emerging topic that advances the review of academic literature. This paper presents a preliminary study on how to review solar irradiance and photovoltaic (PV) power forecasting (both topics combined as “solar forecasting” for short) using text mining, which serves as the first part of a forthcoming series of text mining applications in solar forecasting. This study contains three main contributions: (1) establishing the technological infrastructure (authors, journals & conferences, publications, and organizations) of solar forecasting via the top 1000 papers returned by a Google Scholar search; (2) consolidating the frequently-used abbreviations in solar forecasting by mining the full texts of 249 ScienceDirect publications; and (3) identifying key innovations in recent advances in solar forecasting (e.g., shadow camera, forecast reconciliation). As most of the steps involved in the above analysis are automated via an application programming interface, the presented method can be transferred to other solar engineering topics, or any other scientific domain, by means of changing the search word. The authors acknowledge that text mining, at its present stage, serves as a complement to, but not a replacement of, conventional review papers