603 research outputs found

    Powered-lift aircraft technology

    Get PDF
    Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed

    Large-scale wind-tunnel tests of descent performance of an airplane model with a tilt wing and differential propeller thrust

    Get PDF
    Wind tunnel tests of wing stall, performance, and longitudinal stability & control of large model v/stol tilt wing transport aircraf

    Dimensional structure of bodily panic attack symptoms and their specific connections to panic cognitions, anxiety sensitivity and claustrophobic fears

    Get PDF
    Background. Previous studies of the dimensional structure of panic attack symptoms have mostly identified a respiratory and a vestibular/mixed somatic dimension. Evidence for additional dimensions such as a cardiac dimension and the allocation of several of the panic attack symptom criteria is less consistent. Clarifying the dimensional structure of the panic attack symptoms should help to specify the relationship of potential risk factors like anxiety sensitivity and fear of suffocation to the experience of panic attacks and the development of panic disorder. Method. In an outpatient multicentre study 350 panic patients with agoraphobia rated the intensity of each of the ten DSM-IV bodily symptoms during a typical panic attack. The factor structure of these data was investigated with nonlinear confirmatory factor analysis (CFA). The identified bodily symptom dimensions were related to panic cognitions, anxiety sensitivity and fear of suffocation by means of nonlinear structural equation modelling (SEM). Results. CFA indicated a respiratory, a vestibular/mixed somatic and a cardiac dimension of the bodily symptom criteria. These three factors were differentially associated with specific panic cognitions, different anxiety sensitivity facets and suffocation fear. Conclusions. Taking into account the dimensional structure of panic attack symptoms may help to increase the specificity of the associations between the experience of panic attack symptoms and various panic related constructs

    Diffuse Glioneuronal tumour with Oligodendroglioma‐like features and Nuclear Clusters (DGONC) – a molecularly‐defined glioneuronal CNS tumour class displaying recurrent monosomy 14

    Get PDF
    Aims: DNA methylation-based central nervous system (CNS) tumour classification has identified numerous molecularly distinct tumour types, and clinically relevant subgroups among known CNS tumour entities that were previously thought to represent homogeneous diseases. Our study aimed at characterizing a novel, molecularly defined variant of glioneuronal CNS tumour. Patients and methods: DNA methylation profiling was performed using the Infinium MethylationEPIC or 450 k BeadChip arrays (Illumina) and analysed using the 'conumee' package in R computing environment. Additional gene panel sequencing was also performed. Tumour samples were collected at the German Cancer Research Centre (DKFZ) and provided by multinational collaborators. Histological sections were also collected and independently reviewed. Results: Genome-wide DNA methylation data from >25 000 CNS tumours were screened for clusters separated from established DNA methylation classes, revealing a novel group comprising 31 tumours, mainly found in paediatric patients. This DNA methylation-defined variant of low-grade CNS tumours with glioneuronal differentiation displays recurrent monosomy 14, nuclear clusters within a morphology that is otherwise reminiscent of oligodendroglioma and other established entities with clear cell histology, and a lack of genetic alterations commonly observed in other (paediatric) glioneuronal entities. Conclusions: DNA methylation-based tumour classification is an objective method of assessing tumour origins, which may aid in diagnosis, especially for atypical cases. With increasing sample size, methylation analysis allows for the identification of rare, putative new tumour entities, which are currently not recognized by the WHO classification. Our study revealed the existence of a DNA methylation-defined class of low-grade glioneuronal tumours with recurrent monosomy 14, oligodendroglioma-like features and nuclear clusters

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates

    Get PDF
    Ribonuclease III cleaves double-stranded (ds) structures in bacterial RNAs and participates in diverse RNA maturation and decay pathways. Essential insight on the RNase III mechanism of dsRNA cleavage has been provided by crystallographic studies of the enzyme from the hyperthermophilic bacterium, Aquifex aeolicus. However, the biochemical properties of A. aeolicus (Aa)-RNase III and the reactivity epitopes of its substrates are not known. The catalytic activity of purified recombinant Aa-RNase III exhibits a temperature optimum of ∼70–85°C, with either Mg2+ or Mn2+ supporting efficient catalysis. Small hairpins based on the stem structures associated with the Aquifex 16S and 23S rRNA precursors are cleaved at sites that are consistent with production of the immediate precursors to the mature rRNAs. Substrate reactivity is independent of the distal box sequence, but is strongly dependent on the proximal box sequence. Structural studies have shown that a conserved glutamine (Q157) in the Aa-RNase III dsRNA-binding domain (dsRBD) directly interacts with a proximal box base pair. Aa-RNase III cleavage of the pre-16S substrate is blocked by the Q157A mutation, which reflects a loss of substrate binding affinity. Thus, a highly conserved dsRBD-substrate interaction plays an important role in substrate recognition by bacterial RNase III
    corecore