507 research outputs found

    Establishing Multi-User MIMO Communications Automatically Using Retrodirective Arrays

    Get PDF
    Communications in the mmWave and THz bands will be a key technological pillar for next-generation wireless networks. However, the increase in frequency results in an increase in path loss, which must be compensated for by using large antenna arrays. This introduces challenging issues due to power consumption, signalling overhead for channel estimation, hardware complexity, and slow beamforming and beam alignment schemes, which are in contrast with the requirements of next-generation wireless networks. In this paper, we propose the adoption of a retro-directive antenna array (RAA) at the user equipment (UE) side, where the signal sent by the base station (BS) is reflected towards the source after being conjugated and phase-modulated according to the UE data. By making use of modified Power Methods for the computation of the eigenvectors of the resulting round-trip channel, it is shown that, in single and multi-user multiple-input multiple-output (MIMO) scenarios, ultra-low complexity UEs can establish parallel communication links automatically with the BS in a very short time. This is done in a blind way, also by tracking fast channel variations while communicating, without the need for ADC chains at the UE as well as without explicit channel estimation and time-consuming beamforming and beam alignment schemes

    Cerebral Amyloid and Hypertension are Independently Associated with White Matter Lesions in Elderly.

    Get PDF
    In cognitively normal (CN) elderly individuals, white matter hyperintensities (WMH) are commonly viewed as a marker of cerebral small vessel disease (SVD). SVD is due to exposure to systemic vascular injury processes associated with highly prevalent vascular risk factors (VRFs) such as hypertension, high cholesterol, and diabetes. However, cerebral amyloid accumulation is also prevalent in this population and is associated with WMH accrual. Therefore, we examined the independent associations of amyloid burden and VRFs with WMH burden in CN elderly individuals with low to moderate vascular risk. Participants (n = 150) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) received fluid attenuated inversion recovery (FLAIR) MRI at study entry. Total WMH volume was calculated from FLAIR images co-registered with structural MRI. Amyloid burden was determined by cerebrospinal fluid Aβ1-42 levels. Clinical histories of VRFs, as well as current measurements of vascular status, were recorded during a baseline clinical evaluation. We tested ridge regression models for independent associations and interactions of elevated blood pressure (BP) and amyloid to total WMH volume. We found that greater amyloid burden and a clinical history of hypertension were independently associated with greater WMH volume. In addition, elevated BP modified the association between amyloid and WMH, such that those with either current or past evidence of elevated BP had greater WMH volumes at a given burden of amyloid. These findings are consistent with the hypothesis that cerebral amyloid accumulation and VRFs are independently associated with clinically latent white matter damage represented by WMHs. The potential contribution of amyloid to WMHs should be further explored, even among elderly individuals without cognitive impairment and with limited VRF exposure

    Toward 6G Vehicle-to-Everything Sidelink: Nonorthogonal Multiple Access in the Autonomous Mode

    Get PDF
    The cellular vehicle-to-everything (C-V2X) sidelink technology, specified in the long-term evolution (LTE) and further improved in the 5G new radio (NR) standards to facilitate direct data exchange between vehicles, will play a crucial role in revolutionizing transportation systems. However, the demand for very high reliability and ultralow latency services especially challenges the sidelink resource allocation mechanism when performed by distributed vehicles, in the so-called autonomous mode. One of the major causes of ­performance degradation is the resource allocation mechanism, which was designed for orthogonal multiple access (OMA) and can generate interference and collisions under high load conditions. In this context, here we argue in favor of the use of non-OMA (NOMA) as a game changer for the sidelink in the upcoming 6G V2X, and the purpose of this article is to provide a reference for further intriguing studies in the field. Additionally, the gain achievable over conventional allocation schemes by enabling NOMA through the use of successive interference cancelation (SIC) at the receiver is measured through realistic simulations conducted when considering the latest C-V2X specifications

    CAIXA: a Catalogue of AGN In the XMM-Newton Archive II. Multiwavelength correlations

    Get PDF
    We presented CAIXA, a Catalogue of AGN in the XMM-Newton Archive, in a companion paper. Here, a systematic search for correlations between the X-ray spectral properties and the multiwavelength data was performed for the sources in CAIXA. All the significant (>99.9% confidence level) correlations are discussed along with their physical implications on current models of AGN. Two main correlations are discussed in this paper: a) a very strong anti-correlation between the FWHM of the Hβ\beta optical line and the ratio between the soft and the hard X-ray luminosity. Although similar anti-correlations between optical line width and X-ray spectral steepness have already been discussed in the literature (see e.g., Laor et al. 1994, Boller et al. 1996, Brandt et al. 1997), we consider the formulation we present in this paper is more fundamental, as it links model-independent quantities. Coupled with a strong anti-correlation between the V to hard X-ray flux ratio and the Hβ\beta FHWM, it supports scenarios for the origin of the soft excess in AGN, which require strong suppression of the hard X-ray emission; b) a strong (and expected) correlation between the X-ray luminosity and the black hole mass. Its slope, flatter than 1, is consistent with Eddington ratio-dependent bolometric corrections, such as that recently proposed by Vasudevan & Fabian (2009). Moreover, we critically review through various statistical tests the role that distance biases play in the strong radio to X-ray luminosity correlation found in CAIXA and elsewhere; we conclude that only complete, unbiased samples (such as that recently published by Behar & Laor, 2008) should be used to draw observational constraints on the origin of radio emission in radio-quiet AGN.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and Astrophysics; two figures erroneously attached by astroph to the paper were remove

    Multiple AGN in the crowded field of the compact group SDSS J0959+1259

    Get PDF
    We present a multiwavelength study of a newly discovered compact group (CG), SDSS J0959+1259, based data from XMM-Newton, Sloan Digital Sky Survey (SDSS) and the Calar Alto optical imager BUSCA. With a maximum velocity offset of 500km s−1, a mean redshift of 0.035, and a mean spatial extension of 480kpc, this CG is exceptional in having the highest concentration of nuclear activity in the local Universe, established with a sensitivity limit LX > 4 × 1040ergs−1 in 2-10keV band and R-band magnitude MR < −19. The group is composed of two type-2 Seyferts, one type-1 Seyfert, two LINERs and three star-forming galaxies. Given the high X-ray luminosity of LINERs which reaches ∼1041ergs−1, it is likely that they are also accretion driven, bringing the number of active nuclei in this group to five out of eight (AGN fraction of 60 per cent). The distorted shape of one member of the CG suggests that strong interactions are taking place among its galaxies through tidal forces. Therefore, this system represents a case study for physical mechanisms that trigger nuclear activity and star formation in CG

    Properties of Accretion Flows Around Coalescing Supermassive Black Holes

    Full text link
    What are the properties of accretion flows in the vicinity of coalescing supermassive black holes (SBHs)? The answer to this question has direct implications for the feasibility of coincident detections of electromagnetic (EM) and gravitational wave (GW) signals from coalescences. Such detections are considered to be the next observational grand challenge that will enable testing general relativity in the strong, nonlinear regime and improve our understanding of evolution and growth of these massive compact objects. In this paper we review the properties of the environment of coalescing binaries in the context of the circumbinary disk and hot, radiatively inefficient accretion flow models and use them to mark the extent of the parameter space spanned by this problem. We report the results from an ongoing, general relativistic, hydrodynamical study of the inspiral and merger of black holes, motivated by the latter scenario. We find that correlated EM+GW oscillations can arise during the inspiral phase followed by the gradual rise and subsequent drop-off in the light curve at the time of coalescence. While there are indications that the latter EM signature is a more robust one, a detection of either signal coincidentally with GWs would be a convincing evidence for an impending SBH binary coalescence. The observability of an EM counterpart in the hot accretion flow scenario depends on the details of a model. In the case of the most massive binaries observable by the Laser Interferometer Space Antenna, upper limits on luminosity imply that they may be identified by EM searches out to z~0.1-1. However, given the radiatively inefficient nature of the gas flow, we speculate that a majority of massive binaries may appear as low luminosity AGN in the local universe.Comment: Revised version accepted to Class. Quantum Grav. for proceedings of 8th LISA Symposium. 15 pages, 3 figures, includes changes suggested in referee report
    • …
    corecore