375 research outputs found

    Persistent organic pollutant burden, experimental POP exposure and tissue properties affect metabolic profiles of blubber from grey seal pups

    Get PDF
    Persistent organic pollutants (POPs) are toxic, ubiquitous, resist breakdown, bioaccumulate in living tissue and biomagnify in food webs. POPs can also alter energy balance in humans and wildlife. Marine mammals experience high POP concentrations, but consequences for their tissue metabolic characteristics are unknown. We used blubber explants from wild, grey seal (Halichoerus grypus) pups to examine impacts of intrinsic tissue POP burden and acute experimental POP exposure on adipose metabolic characteristics. Glucose use, lactate production and lipolytic rate differed between matched inner and outer blubber explants from the same individuals and between feeding and natural fasting. Glucose use decreased with blubber dioxin-like PCBs (DL-PCB) and increased with acute experimental POP exposure. Lactate production increased with DL-PCBs during feeding, but decreased with DL-PCBs during fasting. Lipolytic rate increased with blubber dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDX) in fasting animals, but declined with DDX when animals were feeding. Our data show that POP burdens are high enough in seal pups to alter adipose function early in life, when fat deposition and mobilisation are vital. Such POP-induced alterations to adipose glucose use may significantly alter energy balance regulation in marine top predators with the potential for long term impacts on fitness and survival

    Organochloride pesticides in California sea lions revisited

    Get PDF
    BACKGROUND: Dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been banned in most countries, but considerable amounts continue to cycle the ecosphere. Top trophic level predators, like sea birds and marine mammals, bioaccumulate these lipophilic compounds, reflecting their presence in the environment. RESULTS: We measured concentrations of tDDT (p,p' - DDT + p,p' - DDD + p,p' - DDE) and PCBs in the blubber of dead California sea lions stranded along the California coast. tDDT and PCB concentrations were 150 ± 257 ug/g lipid weight (mean ± SD) and 44 ± 78 ug/g lipid weight, respectively. There were no differences in tDDT or PCB concentrations between animal categories varying in sex or age. There was a trend towards a decrease in tDDT and PCB concentrations from northern to southern California. The lipid content of the blubber was negatively correlated with levels of tDDT and PCBs. tDDT concentrations were approximately 3 times higher than PCB concentrations. CONCLUSIONS: tDDT levels in the blubber of California sea lions decreased by over one order of magnitude from 1970 to 2000. PCB level changes over time were unclear owing to a paucity of data and analytical differences over the years. Current levels of these pollutants in California sea lions are among the highest among marine mammals and exceed those reported to cause immunotoxicity or endocrine disruption

    Organochloride pesticides in California sea lions revisited: Correction

    Get PDF
    <p/> <p>There has been an error in the publication of this paper <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>; the title should read: 'Organochlorine pollutants in California sea lions revisited'.</p

    Blood dynamics of mercury and selenium in northern elephant seals during the lactation period

    Full text link
    The effects of reproduction and maternal investment (i.e., milk transfer) on trace element levels remain poorly understood in marine mammals. We examined the blood dynamics of mercury (Hg) and selenium (Se) during lactation in the northern elephant seal (Mirounga angustirostris), a top predator from the North Pacific Ocean. Total Hg and Se levels were measured in whole blood and milk of 10 mother-pup pairs on days 5 and 22 of lactation. Both Hg and Se were transferred to offspring through the milk. Results suggested that the maternal transfer of Se was prominent during lactation, whereas the Hg transfer was larger during gestation. The lactation period affected Hg and Se levels in the blood of elephant seal mothers and pups. Physiological processes and their relationship to body condition should be considered carefully when interpreting trace element levels in the framework of biomonitoring.Peer reviewe

    Predicting consequences of POP-induced disruption of blubber glucose uptake, mass gain rate and thyroid hormone levels for weaning mass in grey seal pups

    Get PDF
    Persistent organic pollutants (POPs) are endocrine disruptors that alter adipose tissue development, regulation and function. Top marine predators are particularly vulnerable because they possess large fat stores that accumulate POPs. However, links between endocrine or adipose tissue function disruption and whole animal energetics have rarely been investigated. We predicted the impact of alterations to blubber metabolic characteristics and circulating thyroid hormone (TH) levels associated with polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) on suckling mass gain and weaning mass in wild grey seal pups. Glucose uptake by inner blubber was a strong predictor of whole animal mass gain rate, which in turn, resulted in heavier weaning mass. Weaning mass was predicted to increase by 3.7 ± 1.59 (sem) %, through increased mass gain rate, in the absence of the previously reported suppressive effect of dioxin-like PCB (DL-PCBs) on blubber glucose uptake. PBDEs were, conversely, associated with faster mass gain. Alleviation of this effect was predicted to reduce weaning mass by 6.02 ± 1.86% (sem). To better predict POPs effects on energy balance, it is crucial to determine if and how PBDEs promote mass gain in grey seal pups. Weaning mass was negatively related to total T3 (TT3) levels. A 20% (range = 9.3–31.7%) reduction in TT3 by DL-PCBs partially overcame the effect of DL-PCB -mediated reduction in blubber glucose uptake. Overall, DL-PCBs were thus predicted to reduce weaning mass by 1.86 ± 1.60%. Organohalogen impacts on whole-animal energy balance in grey seal pups appear to partially offset each other through opposing effects on different mechanisms. POP effects were generally minor, but the largest POP-induced reductions in weaning mass were predicted to occur in pups that were already small. Since weaning mass is positively related to first-year survival, POPs may disproportionately affect smaller individuals, and could continue to have population-level impacts even when levels are relatively low compared to historical values. Our findings show how in vitro experiments combined with measurements in vivo can help elucidate mechanisms that underpin energy balance regulation and help to quantify the magnitude of disruptive effects by contaminants and other stressors in wildlife

    Terrestrial birth and body size tune UCP1 functionality in seals

    Get PDF
    The molecular evolution of the mammalian heater protein UCP1 is a powerful biomarker to understand thermoregulatory strategies during species radiation into extreme climates, such as aquatic life with high thermal conductivity. While fully aquatic mammals lost UCP1, most semiaquatic seals display intact UCP1 genes, apart from large elephant seals. Here, we show that UCP1 thermogenic activity of the small-bodied harbor seal is equally potent compared to terrestrial orthologs, emphasizing its importance for neonatal survival on land. In contrast, elephant seal UCP1 does not display thermogenic activity, not even when translating a repaired or a recently highlighted truncated version. Thus, the thermogenic benefits for neonatal survival during terrestrial birth in semiaquatic pinnipeds maintained evolutionary selection pressure on UCP1 function and were only outweighed by extreme body sizes among elephant seals, fully eliminating UCP1-dependent thermogenesis

    Precision-Cut Liver Slices of Salmo salar as a tool to investigate the oxidative impact of CYP1A-mediated PCB 126 and 3-methylcholanthrene metabolism

    Get PDF
    a b s t r a c t Fish isolated cell systems have long been used to predict in vivo toxicity of man-made chemicals. In present study, we tested the suitability of Precision-Cut Liver Slices (PCLS) as an alternative to these models that allows the evaluation of a global tissue response to toxicants, to investigate oxidative stress response to cytochrome P450 1A (CYP1A) induction in fish liver. PCLS of Salmo salar were exposed for 21 h to increasing doses of 3-methylcholanthrene (3-MC) and Polychlorobiphenyl 126 (PCB 126). 3-MC (25 lM) strongly induced CYP1A transcription. In dose-response analysis (25-100 lM), EROD activity was strongly increased at intermediate 3-MC concentrations. We found the counter-intuitive decline of EROD at the highest 3-MC doses to result from reversible competition with ethoxyresorufin. No increases of H 2 O 2 production, antioxidant enzymes activities or oxidative damage to lipids were found with 3-MC treatments. PCLS subjected to PCB 126 (2-200 nM) showed increased contamination levels and a parallel increased CYP1A mRNA synthesis and EROD activity. H 2 O 2 production tended to increase but no oxidative damage to lipids was found. As antioxidant enzymes activities declined at the highest PCB 126 dose, it is suggested that longer incubation periods could be required to generate oxidative stress in PCLS

    Accumulation of Polychlorinated Biphenyls in Adipocytes: Selective Targeting to Lipid Droplets and Role of Caveolin-1

    Get PDF
    Background : Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that preferentially accumulate in lipid-rich tissues of contaminated organisms. Although the adipose tissue constitutes a major intern reservoir of PCBs and recent epidemiological studies associate PCBs to the development of obesity and its related disorders, little is known about the mechanisms involved in their uptake by the adipose tissue and their intracellular localization in fat cells

    Comprehensive molecular and morphological resolution of blubber stratification in a deep-diving, fasting-adapted seal

    Get PDF
    Blubber is a modified subcutaneous adipose tissue in marine mammals that provides energy storage, thermoregulation, hydrodynamic locomotion, and buoyancy. Blubber displays vertical stratification by lipid content, fatty acid composition, and vascularization, leading to the assumption that deeper blubber layers are metabolically active, while superficial layers are mainly structural and thermoregulatory. However, few studies have examined functional stratification of marine mammal blubber directly, especially in pinnipeds. We characterized morphological and transcriptional differences across blubber layers in the northern elephant seal, a deep-diving and fasting-adapted phocid. We collected blubber from seals early in their fasting period and divided blubber cores into three similarly sized portions. We hypothesized that the innermost blubber portion would have higher 1) heterogeneity in adipocyte size, 2) microvascular density, and 3) expression of genes associated with metabolism and hormone signaling than outer blubber. We found that adipocyte area and variance increased from outermost (skin-adjacent) to innermost (muscle-adjacent) blubber layers, suggesting that inner blubber has a higher capacity for lipid storage and turnover than outer blubber. Inner blubber had a higher proportion of CD144+ endothelial cells, suggesting higher microvascular density. In contrast, outer blubber had a higher proportion of CD4+ immune cells than inner blubber, suggesting higher capacity for response to tissue injury. Transcriptome analysis identified 61 genes that were differentially expressed between inner and outer blubber layers, many of which have not been studied previously in marine mammals. Based on known functions of these genes in other mammals, we suggest that inner blubber has potentially higher 1) adipogenic capacity, 2) cellular diversity, and 3) metabolic and neuroendocrine signaling activity, while outer blubber may have higher 1) extracellular matrix synthesis activity and 2) responsiveness to pathogens and cell stressors. We further characterized expression of nine genes of interest identified by transcriptomics and two adipokines with higher precision across blubber layers using targeted assays. Our study provides functional insights into stratification of blubber in marine mammals and a molecular key, including CD144, CD4, HMGCS2, GABRG2, HCAR2, and COL1A2, for distinguishing blubber layers for physiological and functional studies in seals
    • …
    corecore