12 research outputs found

    α-Lipoic acid protects mitochondrial enzymes and attenuates lipopolysaccharide-induced hypothermia in mice

    Get PDF
    Hypothermia is a key symptom of sepsis, but the mechanism(s) leading to hypothermia during sepsis is largely unknown and thus no effective therapy is available for hypothermia. Therefore, it is important to investigate the mechanisms and develop effective therapeutic methods. Lipopolysaccharide (LPS)-induced hypothermia accompanied by excess nitric oxide (NO) production, lead to a reduction in energy production in wild type mice. However, mice lacking inducible nitric oxide synthase did not suffer from LPS-induced hypothermia, suggesting that hypothermia is associated with excess NO production during sepsis. This observation is supported by the treatment of wild type mice with α-lipoic acid (LA) in that it effectively attenuates LPS-induced hypothermia with decreased NO production. We also found that LA partially restored ATP production, and activities of the mitochondrial enzymes involved in energy metabolism, which were inhibited during sepsis. These data suggest that hypothermia is related to mitochondrial dysfunction, which is likely compromised by excess NO production and that LA administration attenuates hypothermia mainly by protecting mitochondrial enzymes from NO damage

    Alterations in cellular expression in EBV infected epithelial cell lines and tumors.

    No full text
    The Epstein Barr virus (EBV) is linked to the development of two major epithelial malignancies, gastric carcinoma and nasopharyngeal carcinoma. This study evaluates the effects of EBV on cellular expression in a gastric epithelial cell line infected with or without EBV and a nasopharyngeal carcinoma cell line containing EBV. The cells were grown in vitro and as tumors in vivo. The effects on cellular expression were determined using both 2D DIGE proteomics and high throughput RNA sequencing. The data identify multiple pathways that were uniquely activated in vitro. RNA sequences mapping to the mouse genome were identified in both the EBV positive and negative tumor samples in vivo, although, differences between the EBV positive and negative cells were not apparent. However, the tumors appeared to be grossly distinct. The majority of the identified canonical pathways based on two fold changes in expression had decreased activity within the tumors in vivo. Identification of the predicted upstream regulating factors revealed that in vitro the regulating factors were primarily protein transcriptional regulators. In contrast, in vivo the predicted regulators were frequently noncoding RNAs. Hierarchical clustering distinguished the cell lines and tumors, the EBV positive tumors from the EBV negative tumors, and the NPC tumors from the gastric tumors and cell lines. The delineating genes were changed greater than 4 fold and were frequently regulated by protein transcription factors. These data suggest that EBV distinctly affects cellular expression in gastric tumors and NPC and that growth in vivo requires activation of fewer cellular signaling pathways. It is likely that the broad changes in cellular expression that occur at low levels are controlled by regulatory viral and cellular RNAs while major changes are affected by induced protein regulators

    Global Proteomic Changes Induced by the Epstein-Barr Virus Oncoproteins Latent Membrane Protein 1 and 2A

    No full text
    The Epstein-Barr virus (EBV) oncoproteins latent membrane protein 1 (LMP1) and LMP2A constitutively activate multiple signaling pathways, and both have been shown to interact with cellular ubiquitin ligases and affect cellular ubiquitination. To detect the LMP1- and LMP2A-mediated effects on the global cellular proteome, epithelial cell lines expressing LMP1 or LMP2A were analyzed using label-free quantitative proteomics. To identify proteins whose ubiquitination is affected by the viral proteins, the cells were cultured in the presence and absence of deubiquitinase (DUB) and proteasome inhibitors. More than 7,700 proteins were identified with high confidence and considerably more proteins showed significant differences in expression in the presence of inhibitors. Few of the differentially expressed proteins with or without inhibitors were common between LMP1 and LMP2A, confirming that the viral proteins induce unique changes in cell expression and function. However, ingenuity pathway analysis (IPA) of the data indicated that LMP1 and LMP2A modulate many of the same cellular regulatory pathways, including cell death and survival, cell movement, and actin filament dynamics. In addition, various proteasome subunits, ubiquitin-specific peptidases and conjugating enzymes, vesicle trafficking proteins, and NF-κB and mitogen-activated protein kinase signaling proteins were affected by LMP1 or LMP2A. These findings suggest that LMP1 and LMP2A may commonly target critical cell pathways through effects on distinct genes, with many cellular proteins modified by ubiquitination and/or degradation.The Epstein-Barr virus proteins latent membrane protein 1 and 2 have potent effects on cell growth and signaling. Both proteins bind to specific ubiquitin ligases and likely modulate the cellular proteome through ubiquitin-mediated effects on stability and intracellular location. In this study, a comprehensive proteomic analysis of the effects of LMP1 and LMP2A revealed that both proteins affected proteasome subunits, ubiquitin-specific conjugases and peptidases, and vesical trafficking proteins. The data suggest that the effects of these proteins on the abundance and ubiquitination of cellular proteins are in part responsible for their effects on cell growth regulation

    Differentially charged isoforms of apolipoprotein E from human blood are potential biomarkers of Alzheimer’s disease

    Get PDF
    Introduction Alzheimer’s disease (AD) is the major cause of dementia among the elderly. Finding blood-based biomarkers for disease diagnosis and prognosis is urgently needed. Methods We studied protein distributions in brain tissues, cerebrospinal fluid (CSF), and blood of AD patients by using proteomics and a new proteomic method that we call “2D multiplexed Western blot” (2D mxWd). This method allows us to determine in multiple samples the electrophoretic patterns of protein isoforms with different isoelectric points. Results Apolipoprotein E (ApoE) displays a unique distribution of electrophoretic isoforms in the presence of AD and also a unique pattern specific to the APOE genotype. Conclusions The isoelectric distribution of differentially charged ApoE isoforms was used to determine the presence of AD in a small group of samples. Further studies are needed to validate their use as predictors of disease onset and progression, and as biomarkers for determining the efficacy of therapeutic treatments

    Alpha-lipoic acid supplementation protects enzymes from damage by nitrosative and oxidative stress

    Get PDF
    Background: S-nitrosylation of mitochondrial enzymes involved in energy transfer under nitrosative stress may result in ATP deficiency. We investigated whether α-lipoic acid, a powerful antioxidant, could alleviate nitrosative stress by regulating S-nitrosylation,which could result in retaining themitochondrial enzyme activity. Methods: In this study, we have identified the S-nitrosylated forms of subunit 1 of dihydrolipoyllysine succinyltransferase (complex III), and subunit 2 of the α-ketoglutarate dehydrogenase complex by implementing a fluorescence-based differential quantitative proteomics method. Results: We found that the activities of these two mitochondrial enzymes were partially but reversibly inhibited by S-nitrosylation in cultured endothelial cells, and that their activities were partially restored by supplementation of α-lipoic acid. We show that protein S-nitrosylation affects the activity of mitochondrial enzymes that are central to energy supply, and that α-lipoic acid protectsmitochondrial enzymes by altering S-nitrosylation levels. Conclusions: Inhibiting protein S-nitrosylation with α-lipoic acid seems to be a protective mechanism against nitrosative stress. General significance: Identification and characterization of these new protein targets should contribute to expanding the therapeutic power of α-lipoic acid and to a better understanding of the underlying antioxidant mechanisms

    Diggin' on u(biquitin):a novel method for the identification of physiological E3 ubiquitin ligase substrates

    Get PDF
    The ubiquitin-proteasome system (UPS) plays a central role in maintaining protein homeostasis, emphasized by a myriad of diseases that are associated with altered UPS function such as cancer, muscle-wasting, and neurodegeneration. Protein ubiquitination plays a central role in both the promotion of proteasomal degradation as well as cellular signaling through regulation of the stability of transcription factors and other signaling molecules. Substrate specificity is a critical regulatory step of ubiquitination and is mediated by ubiquitin ligases. Recent studies implicate ubiquitin ligases in multiple models of cardiac diseases such as cardiac hypertrophy, atrophy, and ischemia/reperfusion injury, both in a cardioprotective and maladaptive role. Therefore, identifying physiological substrates of cardiac ubiquitin ligases provides both mechanistic insights into heart disease as well as possible therapeutic targets. Current methods identifying substrates for ubiquitin ligases rely heavily upon non-physiologic in vitro methods, impeding the unbiased discovery of physiological substrates in relevant model systems. Here we describe a novel method for identifying ubiquitin ligase substrates utilizing Tandem Ubiquitin Binding Entities (TUBE) technology, two-dimensional differential in gel electrophoresis (2-D DIGE), and mass spectrometry, validated by the identification of both known and novel physiological substrates of the ubiquitin ligase MuRF1 in primary cardiomyocytes. This method can be applied to any ubiquitin ligase, both in normal and disease model systems, in order to identify relevant physiological substrates under various biological conditions, opening the door to a clearer mechanistic understanding of ubiquitin ligase function and broadening their potential as therapeutic targets

    α-Lipoic acid protects mitochondrial enzymes and attenuates lipopolysaccharide-induced hypothermia in mice

    No full text
    Hypothermia is a key symptom of sepsis, but the mechanism(s) leading to hypothermia during sepsis is largely unknown and thus no effective therapy is available for hypothermia. Therefore, it is important to investigate the mechanisms and develop effective therapeutic methods. Lipopolysaccharide (LPS)-induced hypothermia accompanied by excess nitric oxide (NO) production, lead to a reduction in energy production in wild type mice. However, mice lacking inducible nitric oxide synthase did not suffer from LPS-induced hypothermia, suggesting that hypothermia is associated with excess NO production during sepsis. This observation is supported by the treatment of wild type mice with α-lipoic acid (LA) in that it effectively attenuates LPS-induced hypothermia with decreased NO production. We also found that LA partially restored ATP production, and activities of the mitochondrial enzymes involved in energy metabolism, which were inhibited during sepsis. These data suggest that hypothermia is related to mitochondrial dysfunction, which is likely compromised by excess NO production and that LA administration attenuates hypothermia mainly by protecting mitochondrial enzymes from NO damage
    corecore