218 research outputs found

    Fracture of disordered solids in compression as a critical phenomenon: I. Statistical mechanics formalism

    Get PDF
    This is the first of a series of three articles that treats fracture localization as a critical phenomenon. This first article establishes a statistical mechanics based on ensemble averages when fluctuations through time play no role in defining the ensemble. Ensembles are obtained by dividing a huge rock sample into many mesoscopic volumes. Because rocks are a disordered collection of grains in cohesive contact, we expect that once shear strain is applied and cracks begin to arrive in the system, the mesoscopic volumes will have a wide distribution of different crack states. These mesoscopic volumes are the members of our ensembles. We determine the probability of observing a mesoscopic volume to be in a given crack state by maximizing Shannon's measure of the emergent crack disorder subject to constraints coming from the energy-balance of brittle fracture. The laws of thermodynamics, the partition function, and the quantification of temperature are obtained for such cracking systems.Comment: 11 pages, 2 figure

    Rupture by damage accumulation in rocks

    Get PDF
    The deformation of rocks is associated with microcracks nucleation and propagation, i.e. damage. The accumulation of damage and its spatial localization lead to the creation of a macroscale discontinuity, so-called "fault" in geological terms, and to the failure of the material, i.e. a dramatic decrease of the mechanical properties as strength and modulus. The damage process can be studied both statically by direct observation of thin sections and dynamically by recording acoustic waves emitted by crack propagation (acoustic emission). Here we first review such observations concerning geological objects over scales ranging from the laboratory sample scale (dm) to seismically active faults (km), including cliffs and rock masses (Dm, hm). These observations reveal complex patterns in both space (fractal properties of damage structures as roughness and gouge), time (clustering, particular trends when the failure approaches) and energy domains (power-law distributions of energy release bursts). We use a numerical model based on progressive damage within an elastic interaction framework which allows us to simulate these observations. This study shows that the failure in rocks can be the result of damage accumulation

    FRA2A is a CGG repeat expansion associated with silencing of AFF3

    Get PDF
    Folate-sensitive fragile sites (FSFS) are a rare cytogenetically visible subset of dynamic mutations. Of the eight molecularly characterized FSFS, four are associated with intellectual disability (ID). Cytogenetic expression results from CGG tri-nucleotide-repeat expansion mutation associated with local CpG hypermethylation and transcriptional silencing. The best studied is the FRAXA site in the FMR1 gene, where large expansions cause fragile X syndrome, the most common inherited ID syndrome. Here we studied three families with FRA2A expression at 2q11 associated with a wide spectrum of neurodevelopmental phenotypes. We identified a polymorphic CGG repeat in a conserved, brain-active alternative promoter of the AFF3 gene, an autosomal homolog of the X-linked AFF2/FMR2 gene: Expansion of the AFF2 CGG repeat causes FRAXE ID. We found that FRA2A-expressing individuals have mosaic expansions of the AFF3 CGG repeat in the range of several hundred repeat units. Moreover, bisulfite sequencing and pyrosequencing both suggest AFF3 promoter hypermethylation. cSNP-analysis demonstrates monoallelic expression of the AFF3 gene in FRA2A carriers thus predicting that FRA2A expression results in functional haploinsufficiency for AFF3 at least in a subset of tissues. By whole-mount in situ hybridization the mouse AFF3 ortholog shows strong regional expression in the developing brain, somites and limb buds in 9.5-12.5dpc mouse embryos. Our data suggest that there may be an association between FRA2A and a delay in the acquisition of motor and language skills in the families studied here. However, additional cases are required to firmly establish a causal relationship

    Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales

    Get PDF
    This contribution presents a two-scale formulation devised to simulate failure in materials with het- erogeneous micro-structure. The mechanical model accounts for the activation of cohesive cracks in the micro-scale domain. The evolution/propagation of cohesive micro-cracks can induce material instability at the macro-scale level. Then, a cohesive crack is activated in the macro-scale model which considers, in a homogenized sense, the constitutive response of the intricate failure mode taking place in the smaller length scale.The two-scale model is based on the concept of Representative Volume Element (RVE). It is designed following an axiomatic variational structure. Two hypotheses are introduced in order to build the foundations of the entire two-scale theory, namely: (i) a mechanism for transferring kinematical information from macro- to-micro scale along with the concept of “Kinematical Admissibility”, relating both primal descriptions, and (ii) a Multiscale Variational Principle of internal virtual power equivalence between the involved scales of analysis. The homogenization formulae for the generalized stresses, as well as the equilibrium equations at the micro-scale, are consequences of the variational statement of the problem.The present multiscale technique is a generalization of a previous model proposed by the authors and could be viewed as an application of a general framework recently proposed by the authors. The main novelty in this article lies on the fact that failure modes in the micro-structure now involve a set of multiple cohesive cracks, connected or disconnected, with arbitrary orientation, conforming a complex tortuous failure path. Tortuosity is a topic of decisive importance in the modelling of material degradation due to crack propagation. Following the present multiscale modelling approach, the tortuosity effect is introduced in order to satisfy the “Kinematical Admissibility” concept, when the macro-scale kinematics is transferred into the micro-scale domain. There- fore, it has a direct consequence in the homogenized mechanical response, in the sense that the proposed scale transition method (including the tortuosity effect) retrieves the correct post-critical response.Coupled (macro-micro) numerical examples are presented showing the potentialities of the model to sim- ulate complex and realistic fracture problems in heterogeneous materials. In order to validate the multiscale technique in a rigorous manner, comparisons with the so-called DNS (Direct Numerical Solution) approach are also presented

    RNA Gain-of-Function in Spinocerebellar Ataxia Type 8

    Get PDF
    Microsatellite expansions cause a number of dominantly-inherited neurological diseases. Expansions in coding-regions cause protein gain-of-function effects, while non-coding expansions produce toxic RNAs that alter RNA splicing activities of MBNL and CELF proteins. Bi-directional expression of the spinocerebellar ataxia type 8 (SCA8) CTG CAG expansion produces CUG expansion RNAs (CUGexp) from the ATXN8OS gene and a nearly pure polyglutamine expansion protein encoded by ATXN8 CAGexp transcripts expressed in the opposite direction. Here, we present three lines of evidence that RNA gain-of-function plays a significant role in SCA8: 1) CUGexp transcripts accumulate as ribonuclear inclusions that co-localize with MBNL1 in selected neurons in the brain; 2) loss of Mbnl1 enhances motor deficits in SCA8 mice; 3) SCA8 CUGexp transcripts trigger splicing changes and increased expression of the CUGBP1-MBNL1 regulated CNS target, GABA-A transporter 4 (GAT4/Gabt4). In vivo optical imaging studies in SCA8 mice confirm that Gabt4 upregulation is associated with the predicted loss of GABAergic inhibition within the granular cell layer. These data demonstrate that CUGexp transcripts dysregulate MBNL/CELF regulated pathways in the brain and provide mechanistic insight into the CNS effects of other CUGexp disorders. Moreover, our demonstration that relatively short CUGexp transcripts cause RNA gain-of-function effects and the growing number of antisense transcripts recently reported in mammalian genomes suggest unrecognized toxic RNAs contribute to the pathophysiology of polyglutamine CAG CTG disorders

    Gene expression signatures of morphologically normal breast tissue identify basal-like tumors

    Get PDF
    INTRODUCTION: The role of the cellular microenvironment in breast tumorigenesis has become an important research area. However, little is known about gene expression in histologically normal tissue adjacent to breast tumor, if this is influenced by the tumor, and how this compares with non-tumor-bearing breast tissue. METHODS: To address this, we have generated gene expression profiles of morphologically normal epithelial and stromal tissue, isolated using laser capture microdissection, from patients with breast cancer or undergoing breast reduction mammoplasty (n = 44). RESULTS: Based on this data, we determined that morphologically normal epithelium and stroma exhibited distinct expression profiles, but molecular signatures that distinguished breast reduction tissue from tumor-adjacent normal tissue were absent. Stroma isolated from morphologically normal ducts adjacent to tumor tissue contained two distinct expression profiles that correlated with stromal cellularity, and shared similarities with soft tissue tumors with favorable outcome. Adjacent normal epithelium and stroma from breast cancer patients showed no significant association between expression profiles and standard clinical characteristics, but did cluster ER/PR/HER2-negative breast cancers with basal-like subtype expression profiles with poor prognosis. CONCLUSION: Our data reveal that morphologically normal tissue adjacent to breast carcinomas has not undergone significant gene expression changes when compared to breast reduction tissue, and provide an important gene expression dataset for comparative studies of tumor expression profiles

    A systematic review of outcome and outcome-measure reporting in randomised trials evaluating surgical interventions for anterior-compartment vaginal prolapse: a call to action to develop a core outcome set

    Get PDF
    INTRODUCTION: We assessed outcome and outcome-measure reporting in randomised controlled trials evaluating surgical interventions for anterior-compartment vaginal prolapse and explored the relationships between outcome reporting quality with journal impact factor, year of publication, and methodological quality. METHODS: We searched the bibliographical databases from inception to October 2017. Two researchers independently selected studies and assessed study characteristics, methodological quality (Jadad criteria; range 1-5), and outcome reporting quality Management of Otitis Media with Effusion in Cleft Palate (MOMENT) criteria; range 1-6], and extracted relevant data. We used a multivariate linear regression to assess associations between outcome reporting quality and other variables. RESULTS: Eighty publications reporting data from 10,924 participants were included. Seventeen different surgical interventions were evaluated. One hundred different outcomes and 112 outcome measures were reported. Outcomes were inconsistently reported across trials; for example, 43 trials reported anatomical treatment success rates (12 outcome measures), 25 trials reported quality of life (15 outcome measures) and eight trials reported postoperative pain (seven outcome measures). Multivariate linear regression demonstrated a relationship between outcome reporting quality with methodological quality (β = 0.412; P = 0.018). No relationship was demonstrated between outcome reporting quality with impact factor (β = 0.078; P = 0.306), year of publication (β = 0.149; P = 0.295), study size (β = 0.008; P = 0.961) and commercial funding (β = -0.013; P = 0.918). CONCLUSIONS: Anterior-compartment vaginal prolapse trials report many different outcomes and outcome measures and often neglect to report important safety outcomes. Developing, disseminating and implementing a core outcome set will help address these issues
    corecore